

Go Programming Blueprints

Build real-world, production-ready solutions in Go using
cutting-edge technology and techniques

Mat Ryer

BIRMINGHAM - MUMBAI

Go Programming Blueprints

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors, will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: January 2015

Production reference: 1200115

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78398-802-0

www.packtpub.com

www.packtpub.com

Credits

Author
Mat Ryer

Reviewers
Tyler Bunnell

Michael Hamrah

Nimish Parmar

Commissioning Editor
Kunal Parikh

Acquisition Editor
Richard Brookes-Bland

Content Development Editor
Govindan Kurumangattu

Technical Editor
Sebastian Rodrigues

Copy Editor
Vijay Tase

Project Coordinator
Shipra Chawhan

Proofreaders
Simran Bhogal

Maria Gould

Ameesha Green

Paul Hindle

Indexer
Hemangini Bari

Graphics
Abhinash Sahu

Production Coordinator
Komal Ramchandani

Cover Work
Komal Ramchandani

About the Author

Mat Ryer has a family legend (or conspiracy) that tells of him programming
computers from the age of 6—he and his father would build games and programs,
first BASIC on a ZX Spectrum then later AmigaBASIC and AMOS on their
Commodore Amiga. Many hours were spent manually copying out code from
the Amiga Format magazine, before spending more still tweaking variables or
moving GOTO statements around to see what might happen. The same spirit
of exploration and obsession with programming led Mat to start work for a local
agency in Mansfield, England, when he was 18, where he started to build websites
and services.

In 2006, Mat's wife, Laurie, took a job at the Science Museum in London, and so
they both left rural Nottinghamshire for the big city, where Mat took a job at BT.
It was here that he worked with a talented group of developers and managers on
honing agile development skills and developing a light flavor that he still uses today.

After contracting around London for a few years, coding everything from C#
and Objective-C to Ruby and JavaScript, Mat noticed a new systems language
called Go that Google was pioneering. Because it addressed very pertinent and
relevant modern technical challenges, Mat started using it to solve problems
while the language was still in beta and he has used it ever since.

In 2012, Mat and Laurie left England to live in Boulder, Colorado, where Mat
works on a variety of projects, from big data web services and highly available
systems to small side projects and charitable endeavors.

Acknowledgments

I wouldn't have been able to write this book without the help of the wonderful
Laurie Edwards, who, while working on her own projects, took the time to keep me
organized and focused. Without her continuous and undying support, I dare say, this
book (along with every other project I embark on) would never have happened.

Tyler Bunnell (@tylerb on GitHub)—who, believe it or not, I met on Google Code
(working on the Goweb project)—is my Go life partner. We have paired on many
projects so far, and will no doubt continue to do so into the future, until one of us
(him) is tragically killed by the other due to some disagreement over proper use of
the sync package! Tyler and I learned Go together, and he was also gracious enough
to become a technical reviewer for this book—so in a way, you can blame any
mistakes on him!

Other development heroes of mine include Ryan Quinn (@mazondo on GitHub), who
seems to build an app a day and is living proof of how building something, however
simple, is always better than building nothing. Thanks also go out to Tim Schreiner for
engaging in debates with me over the good and bad bits of Go as well as being my
go-to guy on matters close to and beyond the fringes of computer science.

Thanks go to the core Go team for building such a fun language and to the entire
Go community who have saved me months of development with their contributions.

Special thanks also go to everyone who has supported me and helped me make
doing what I love into a career, including but not limited to Nick Ryer (my dad,
for getting me into computers in the first place), Maggie Ryer, Chris Ryer, Glenn
Wilson, Phil Jackson, Jeff Cavins, Simon Howard, Edd Grant, Alan Meade, Steve
Cart, Andy Jackson, Aditya Pradana, Andy Joslin, Simon Howard, Phil Edwards,
Tracey Edwards, and all my other great friends and family.

About the Reviewers

Tyler Bunnell (@tylerb on GitHub) is an entrepreneur and developer whose
inquisitive personality has enabled him to become an avid problem solver, seeking out
knowledge and solutions and always aiming to be innovative and ahead of the curve.

His programming portfolio is interestingly eclectic; he cofounded Mizage, where he
created a line of OS X applications, including Divvy, before partnering with a vocal
coach to create Voice Tutor for iOS—an application that helps everyone sing without
the need for private lessons. In 2012, Tyler took an interest in an emerging language,
Go, where he made an immediate impact with contributions to the Go open source
community by cofounding popular projects such as Testify, Graceful, and Genny,
amongst other things. Most recently, he has turned his attention to an exciting new
start-up, but he can't talk about that one just yet.

Michael Hamrah is a software engineer from Brooklyn, New York, who specializes
in scalable, distributed systems for the Web with a focus on API design, event-driven
asynchronous programming, and data modeling and storage. He works primarily with
Scala and Go, and has extensive experience with all levels of the software stack. He can
be reached via LinkedIn at https://www.linkedin.com/in/hamrah.

https://www.linkedin.com/in/hamrah

Nimish Parmar has over 10 years of experience building high performance
distributed systems. After receiving his bachelor's degree in computer engineering
from the University of Mumbai, Nimish completed a master of science in computer
science from the University of Southern California. He was the technical reviewer
for the book Amazon Web Services: Migrating your .NET Enterprise Application,
Packt Publishing

He's currently working as a senior software engineer at StumbleUpon in
San Francisco. Nimish is a die-hard USC Trojans football fan and enjoys
snowboarding during winter.

I'd like to thank my parents, Ragini and Bipin. Words can't describe
how fortunate I am to have received your endless love and support.

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles,
sign up for a range of free newsletters and receive exclusive discounts and offers
on Packt books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print, and bookmark content
•	 On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely-free books. Simply use your login credentials
for immediate access.

http://www.PacktPub.com
www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
http://www.packtpub.com/

Table of Contents
Preface	 1
Chapter 1: Chat Application with Web Sockets	 9

A simple web server	 10
Templates	 11

Doing things once	 14
Using your own handlers	 14

Properly building and executing Go programs	 15
Modeling a chat room and clients on the server	 15

Modeling the client	 16
Modeling a room	 18
Concurrency programming using idiomatic Go	 19
Turning a room into an HTTP handler	 20
Use helper functions to remove complexity	 22
Creating and using rooms	 23

Building an HTML and JavaScript chat client	 23
Getting more out of templates	 25

Tracing code to get a look under the hood	 28
Writing a package using TDD	 28

Interfaces	 29
Unit tests	 30
Red-green testing	 32
Implementing the interface	 34
Unexported types being returned to users	 35

Using our new trace package	 35
Making tracing optional	 37
Clean package APIs	 39

Summary	 39

Table of Contents

[ii]

Chapter 2: Adding Authentication	 41
Handlers all the way down	 42
Making a pretty social sign-in page	 44
Endpoints with dynamic paths	 47
OAuth2	 49

Open source OAuth2 packages	 49
Tell the authentication providers about your app	 50
Implementing external logging in	 51

Logging in	 52
Handling the response from the provider	 54
Presenting the user data	 57
Augmenting messages with additional data	 58

Summary	 62
Chapter 3: Three Ways to Implement Profile Pictures	 65

Avatars from the authentication server	 66
Getting the avatar URL	 66
Transmitting the avatar URL	 67
Adding the avatar to the user interface	 68
Logging out	 69
Making things prettier	 70

Implementing Gravatar	 72
Abstracting the avatar URL process	 73

The authentication service and avatar's implementation	 74
Using an implementation	 76
Gravatar implementation	 78

Uploading an avatar picture	 81
User identification	 81
An upload form	 82
Handling the upload	 83
Serving the images	 85
The Avatar implementation for local files	 86

Supporting different file types	 88
Refactoring and optimizing our code	 89

Replacing concrete types with interfaces	 89
Changing interfaces in a test-driven way	 90
Fixing existing implementations	 93
Global variables versus fields	 94
Implementing our new design	 94
Tidying up and testing	 95

Combining all three implementations	 96
Summary	 98

Table of Contents

[iii]

Chapter 4: Command-line Tools to Find Domain Names	 99
Pipe design for command-line tools	 100
Five simple programs	 100

Sprinkle	 101
Exercise – configurable transformations	 104

Domainify	 104
Exercise – making top-level domains configurable	 106

Coolify	 106
Synonyms	 110

Using environment variables for configuration	 110
Consuming a web API	 111
Getting domain suggestions	 115

Available	 116
Composing all five programs	 119

One program to rule them all	 120
Summary	 123

Chapter 5: Building Distributed Systems and Working with
Flexible Data	 125

System design	 126
Database design	 127

Installing the environment	 128
NSQ	 128

NSQ driver for Go	 129
MongoDB	 130

MongoDB driver for Go	 130
Starting the environment	 131

Votes from Twitter	 132
Authorization with Twitter	 132

Extracting the connection	 133
Reading environment variables	 134

Reading from MongoDB	 136
Reading from Twitter	 138

Signal channels	 140
Publishing to NSQ	 143
Gracefully starting and stopping	 144
Testing	 147

Counting votes	 148
Connecting to the database	 149
Consuming messages in NSQ	 149
Keeping the database updated	 151
Responding to Ctrl + C	 153

Table of Contents

[iv]

Running our solution	 154
Summary	 155

Chapter 6: Exposing Data and Functionality through a
RESTful Data Web Service API	 157

RESTful API design	 158
Sharing data between handlers	 159
Wrapping handler functions	 161

API key	 161
Database session	 162
Per request variables	 163
Cross-browser resource sharing	 164

Responding	 164
Understanding the request	 166
A simple main function to serve our API	 168

Using handler function wrappers	 170
Handling endpoints	 171

Using tags to add metadata to structs	 171
Many operations with a single handler	 172

Reading polls	 173
Creating a poll	 175
Deleting a poll	 176
CORS support	 176

Testing our API using curl	 177
A web client that consumes the API	 178

An index page showing a list of polls	 179
A page to create a new poll	 181
A page to show details of the poll	 183

Running the solution	 186
Summary	 187

Chapter 7: Random Recommendations Web Service	 189
Project overview	 190

Project design specifics	 191
Representing data in code	 193

Public views of Go structs	 195
Generating random recommendations	 197

Google Places API key	 198
Enumerators in Go	 198

Test-driven enumerator	 200
Querying the Google Places API	 204
Building recommendations	 205

Table of Contents

[v]

Handlers that use query parameters	 207
CORS	 208
Testing our API	 209

Web application	 210
Summary	 211

Chapter 8: Filesystem Backup	 213
Solution design	 214

Project structure	 214
Backup package	 215

Obvious interfaces?	 215
Implementing ZIP	 216
Has the filesystem changed?	 219
Checking for changes and initiating a backup	 221

Hardcoding is OK for a short while	 222
The user command-line tool	 223

Persisting small data	 224
Parsing arguments	 225

Listing the paths	 226
Adding paths	 227
Removing paths	 228

Using our new tool	 228
The daemon backup tool	 229

Duplicated structures	 231
Caching data	 231
Infinite loops	 232
Updating filedb records	 234

Testing our solution	 235
Summary	 236

Appendix: Good Practices for a Stable Go Environment	 239
Installing Go	 240

Installing the C tools	 240
Downloading and building Go from the source	 241

Configuring Go	 242
Getting GOPATH right	 243

Go tools	 244
Cleaning up, building, and running tests on save	 247

Sublime Text 3	 247
Summary	 250

Index	 251

Preface
I decided to write Go Programming Blueprints because I wanted to expel the myth that
Go, being a relatively young language and community, is a bad choice for writing
and iterating on software quickly. I have a friend who knocks out complete Ruby
on Rails apps in a weekend by mashing up pre-existing gems and libraries; Rails
as a platform has become known for enabling rapid development. Since I do the
same with Go and the ever-growing buffet of open source packages, I wanted to
share some real-world examples of how we can quickly build and release software
that performs great from day one and is ready to scale when our projects take off
in a way that Rails cannot compete with. Of course, most scalability happens outside
the language, but features like Go's built-in concurrency mean you can get some very
impressive results from even the most basic hardware, giving you a head start when
things start to get real.

This book explores five very different projects, any of which could form the basis
of a genuine start-up. Whether it's a low-latency chat application, a domain name
suggestion tool, a social polling and election service built on Twitter, or a random
night out generator powered by Google Places, each chapter touches upon a variety
of problems that most products or services written in Go will need to address. The
solutions I present in the book are just one of many ways to tackle each project, and
I would encourage you to make up your own mind about how I approached them.
The concepts are more important than the code itself, but you'll hopefully pick up
a few tips and tricks here and there that can go into your Go toolbelt.

Preface

[2]

The process by which I wrote this book might be interesting because it represents
something about the philosophies adopted by many agile developers. I started by
giving myself the challenge of building a real deployable product (albeit a simple
one; minimum viable product if you will) before getting stuck into it and writing
a version 1. Once I got it working, I would rewrite it from scratch. It has been said
many times by novelists and journalists that the art of writing is rewriting; I have
found this to be true for software as well. The first time we write a piece of code, all
we are really doing is learning about the problem and how it might be tackled as
well as getting some of our thinking out of our heads and onto paper (or into a text
editor). The second time we write it, we are applying our new knowledge to actually
solve the problem. If you've never tried this, give it a shot—you might find that the
quality of your code shoots up quite dramatically as I did. It doesn't mean the second
time will be the last time—software evolves and we should try to keep it as cheap
and disposable as possible, so we don't mind throwing pieces away if they go stale
or start to get in the way.

I write all of my code following Test-driven Development (TDD) practices, some
of which we will do together throughout the chapters and some you'll just see the
result of in the final code. All of the test code can be found in the GitHub repositories
for this book even if it's not included in print.

Once I had my test-driven second versions completed, I would start writing the
chapter describing how and why I did what I did. In most cases, the iterative
approach I took is left out of the book because it would just add pages of tweaks
and edits, which would likely just become frustrating for the reader. However, on
a couple of occasions, we will iterate together to get a feel of how a process of
gradual improvements and small iterations (starting and keeping it simple and
introducing complexity only when absolutely necessary) can be applied when
writing Go packages and programs.

I moved to the United States from England in 2012, but that is not why the chapters
are authored in American English; it was a requirement from the publisher. I
suppose this book is aimed at an American audience, or perhaps it's because
American English is the standard language of computing (in British code, properties
that deal with color are spelled without the U). Either way, I apologize in advance
for any trans-Atlantic slips; I know how pedantic programmers can be.

Any questions, improvements, suggestions, or debates (I love how opinionated the
Go community—as well as the core team and the language itself—is) are more than
welcome. These should probably take place in the GitHub issues for the book set up
specifically at https://github.com/matryer/goblueprints so that everybody
can take part.

https://github.com/matryer/goblueprints

Preface

[3]

Finally, I would be thrilled if somebody forms a start-up based on any of these
projects, or makes use of them in other places. I would love to hear about it; you
can tweet me at @matryer and let me know either way.

What this book covers
Chapter 1, Chat Application with Web Sockets, shows how to build a complete web
application that allows multiple people to have a real-time conversation right in
their web browser. We see how the net/http package lets us serve HTML pages
as well as connect to the client's browser with web sockets.

Chapter 2, Adding Authentication, shows how to add OAuth to our chat application
so that we can keep track of who is saying what, but let them log in using Google,
Facebook, or GitHub.

Chapter 3, Three Ways to Implement Profile Pictures, explains how to add profile
pictures to the chat application taken from either the authentication service, the
Gravitar.com web service, or by allowing users to upload their own picture
from their hard drive.

Chapter 4, Command-line Tools to Find Domain Names, explores how easy building
command-line tools is in Go and puts those skills to use to tackle the problem of
finding the perfect domain name for our chat application. It also explores how easy
Go makes it to utilize the standard in and standard out pipes to produce some
pretty powerful composable tools.

Chapter 5, Building Distributed Systems and Working with Flexible Data, explains how
to prepare for the future of democracy by building a highly scalable Twitter polling
and vote counting engine powered by NSQ and MongoDB.

Chapter 6, Exposing Data and Functionality through a RESTful Data Web Service API,
looks at how to expose the capabilities we built in Chapter 5, Building Distributed
Systems and Working with Flexible Data, through a JSON web service, specifically
how wrapping http.HandlerFunc functions gives us a powerful pipeline pattern.

Chapter 7, Random Recommendations Web Service, shows how to consume the
Google Places API to generate a location-based random recommendations API
that represents a fun way to explore any area. It also explores why it's important
to keep internal data structures private, controlling the public view into the same
data, as well as how to implement enumerators in Go.

Gravitar.com

Preface

[4]

Chapter 8, Filesystem Backup, helps to build a simple but powerful filesystem backup
tool for our code projects and explore interacting with the filesystem using the os
package from the Go standard library. It also looks at how Go's interfaces allow
simple abstractions to yield powerful results.

Appendix, Good Practices for a Stable Go Environment, teaches us how to install
Go from scratch on a new machine and discusses some of the environmental
options we have and the impact they might have in the future. We will also
consider how collaboration might influence some of our decisions as well as
the impact open sourcing our packages might have.

What you need for this book
To compile and run the code from this book, you will need a computer capable
of running an operating system that supports the Go toolset, a list of which can
be found at https://golang.org/doc/install#requirements.

Appendix, Good Practices for a Stable Go Environment, has some useful tips to install
Go and set up your development environment including how to work with the
GOPATH environment variable.

Who this book is for
This book is for all Go programmers—from beginners looking to explore the
language by building real projects to expert gophers with an interest in how
the language can be applied in interesting ways.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"We can use functionality from other packages using the import keyword, after
we have used go get to download them."

A block of code is set as follows:

package meander
type Cost int8

https://golang.org/doc/install#requirements

Preface

[5]

const (
 _ Cost = iota
 Cost1
 Cost2
 Cost3
 Cost4
 Cost5
)

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

package meander
type Cost int8
const (
 _ Cost = iota
 Cost1
 Cost2
 Cost3
 Cost4
 Cost5
)

Any command-line input or output is written as follows:

go build -o project && ./project

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "Once
you install Xcode, you open Preferences and navigate to the Downloads section.

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[6]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an email to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things
to help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you. Alternatively, check out the GitHub repository
for this book at http://github.com/matryer/goblueprints.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

www.packtpub.com/authors
http://www.PacktPub.com
http://www.PacktPub.com/support
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/support
http://github.com/matryer/goblueprints

Preface

[7]

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we
can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem
with any aspect of the book, and we will do our best to address it.

mailto:copyright@packtpub.com

Chat Application with
Web Sockets

Go is great for writing high-performance, concurrent server applications and tools,
and the Web is the perfect medium over which to deliver them. It would be difficult
these days to find a gadget that is not web-enabled and allows us to build a single
application that targets almost all platforms and devices.

Our first project will be a web-based chat application that allows multiple users to
have a real-time conversation right in their web browser. Idiomatic Go applications
are often composed of many packages, which are organized by having code in
different folders, and this is also true of the Go standard library. We will start by
building a simple web server using the net/http package, which will serve the
HTML files. We will then go on to add support for web sockets through which
our messages will flow.

In languages such as C#, Java, or Node.js, complex threading code and clever use
of locks need to be employed in order to keep all clients in sync. As we will see,
Go helps us enormously with its built-in channels and concurrency paradigms.

In this chapter, you will learn how to:

•	 Use the net/http package to serve HTTP requests
•	 Deliver template-driven content to users' browsers
•	 Satisfy a Go interface to build our own http.Handler types
•	 Use Go's goroutines to allow an application to perform multiple

tasks concurrently
•	 Use channels to share information between running Go routines
•	 Upgrade HTTP requests to use modern features such as web sockets

Chat Application with Web Sockets

[10]

•	 Add tracing to the application to better understand its inner workings
•	 Write a complete Go package using test-driven development practices
•	 Return unexported types through exported interfaces

Complete source code for this project can be found at https://
github.com/matryer/goblueprints/tree/master/
chapter1/chat. The source code was periodically committed so
the history in GitHub actually follows the flow of this chapter too.

A simple web server
The first thing our chat application needs is a web server that has two main
responsibilities: it must serve the HTML and JavaScript chat clients that run
in the user's browser and accept web socket connections to allow the clients
to communicate.

The GOPATH environment variable is covered in detail in Appendix,
Good Practices for a Stable Go Environment. Be sure to read that first if
you need help getting set up.

Create a main.go file inside a new folder called chat in your GOPATH and add the
following code:

package main

import (
 "log"
 "net/http"
)

func main() {

 http.HandleFunc("/", func(w http.ResponseWriter, r
*http.Request) {
 w.Write([]byte(`
 <html>
 <head>
 <title>Chat</title>
 </head>
 <body>
 Let's chat!

https://github.com/matryer/goblueprints/tree/master/chapter1/chat
https://github.com/matryer/goblueprints/tree/master/chapter1/chat
https://github.com/matryer/goblueprints/tree/master/chapter1/chat

Chapter 1

[11]

 </body>
 </html>
 `))
 })
 // start the web server
 if err := http.ListenAndServe(":8080", nil); err != nil {
 log.Fatal("ListenAndServe:", err)
 }
}

This is a complete albeit simple Go program that will:

•	 Listen to the root path using the net/http package
•	 Write out the hardcoded HTML when a request is made
•	 Start a web server on port :8080 using the ListenAndServe method

The http.HandleFunc function maps the path pattern "/" to the function we
pass as the second argument, so when the user hits http://localhost:8080/,
the function will be executed. The function signature of func(w http.
ResponseWriter, r *http.Request) is a common way of handling HTTP
requests throughout the Go standard library.

We are using package main because we want to build and run
our program from the command line. However, if we were building
a reusable chatting package, we might choose to use something
different, such as package chat.

In a terminal, run the program by navigating to the main.go file you just created
and execute:

go run main.go

Open a browser to localhost:8080 to see the Let's chat! message.

Having the HTML code embedded within our Go code like this works, but it is
pretty ugly and will only get worse as our projects grow. Next, we will see how
templates can help us clean this up.

Templates
Templates allow us to blend generic text with specific text, for instance, injecting a
user's name into a welcome message. For example, consider the following template:

Hello {name}, how are you?

Chat Application with Web Sockets

[12]

We are able to replace the {name} text in the preceding template with the real name
of a person. So if Laurie signs in, she might see:

Hello Laurie, how are you?

The Go standard library has two main template packages: one called text/template
for text and one called html/template for HTML. The html/template package does
the same as the text version except that it understands the context in which data will
be injected into the template. This is useful because it avoids script injection attacks
and resolves common issues such as having to encode special characters for URLs.

Initially, we just want to move the HTML code from inside our Go code to its own
file, but won't blend any text just yet. The template packages make loading external
files very easy, so it's a good choice for us.

Create a new folder under our chat folder called templates and create a chat.html
file inside it. We will move the HTML from main.go to this file, but we will make a
minor change to ensure our changes have taken effect.

<html>
 <head>
 <title>Chat</title>
 </head>
 <body>
 Let's chat (from template)
 </body>
</html>

Now, we have our external HTML file ready to go, but we need a way to compile
the template and serve it to the user's browser.

Compiling a template is a process by which the source template is
interpreted and prepared for blending with various data, which must
happen before a template can be used but only needs to happen once.

Chapter 1

[13]

We are going to write our own struct type that is responsible for loading,
compiling, and delivering our template. We will define a new type that will take a
filename string, compile the template once (using the sync.Once type), keep the
reference to the compiled template, and then respond to HTTP requests. You will
need to import the text/template, path/filepath, and sync packages in order
to build your code.

In main.go, insert the following code above the func main() line:

// templ represents a single template
type templateHandler struct {
 once sync.Once
 filename string
 templ *template.Template
}
// ServeHTTP handles the HTTP request.
func (t *templateHandler) ServeHTTP(w http.ResponseWriter, r
*http.Request) {
 t.once.Do(func() {
 t.templ =
template.Must(template.ParseFiles(filepath.Join("templates",
t.filename)))
 })
 t.templ.Execute(w, nil)
}

Did you know that you could automate the adding and removing
of imported packages? See Appendix, Good Practices for a Stable Go
Environment to learn how to do this.

The templateHandler type has a single method called ServeHTTP whose signature
looks suspiciously like the method we passed to http.HandleFunc earlier. This
method will load the source file, compile the template and execute it, and write
the output to the specified http.ResponseWriter object. Because the ServeHTTP
method satisfies the http.Handler interface, we can actually pass it directly to
http.Handle.

A quick look at the Go standard library source code, which is located
at http://golang.org/pkg/net/http/#Handler, will reveal
that the interface definition for http.Handler specifies that only the
ServeHTTP method need be present in order for a type to be used to
serve HTTP requests by the net/http package.

http://golang.org/pkg/net/http/#Handler

Chat Application with Web Sockets

[14]

Doing things once
We only need to compile the template once, and there are a few different ways to
approach this in Go. The most obvious is to have a NewTemplateHandler function
that creates the type and calls some initialization code to compile the template. If we
were sure the function would be called by only one goroutine (probably the main
one during the setup in the main function), this would be a perfectly acceptable
approach. An alternative, which we have employed in the preceding section, is
to compile the template once inside the ServeHTTP method. The sync.Once type
guarantees that the function we pass as an argument will only be executed once,
regardless of how many goroutines are calling ServeHTTP. This is helpful because
web servers in Go are automatically concurrent and once our chat application takes
the world by storm, we could very well expect to have many concurrent calls to the
ServeHTTP method.

Compiling the template inside the ServeHTTP method also ensures that our
code does not waste time doing work before it is definitely needed. This lazy
initialization approach doesn't save us much in our present case, but in cases
where the setup tasks are time- and resource-intensive and where the functionality
is used less frequently, it's easy to see how this approach would come in handy.

Using your own handlers
To implement our templateHandler type, we need to update the main body
function so that it looks like this:

func main() {
 // root
 http.Handle("/", &templateHandler{filename: "chat.html"})
 // start the web server
 if err := http.ListenAndServe(":8080", nil); err != nil {
 log.Fatal("ListenAndServe:", err)
 }
}

The templateHandler structure is a valid http.Handler type so we can pass
it directly to the http.Handle function and ask it to handle requests that match
the specified pattern. In the preceding code, we created a new object of the type
templateHandler specifying the filename as chat.html that we then take the
address of (using the & address of operator) and pass it to the http.Handle
function. We do not store a reference to our newly created templateHandler
type, but that's OK because we don't need to refer to it again.

Chapter 1

[15]

In your terminal, exit the program by pressing Ctrl + C before re-running it, then
refresh your browser and notice the addition of the (from template) text. Now
our code is much simpler than an HTML code and free from those ugly blocks.

Properly building and executing Go programs
Running Go programs using a go run command is great when our code is made
up of a single main.go file. However, often we might quickly need to add other
files. This requires us to properly build the whole package into an executable
binary before running it. This is simple enough, and from now on, this is how
you will build and run your programs in a terminal:

go build -o {name}

./{name}

The go build command creates the output binary using all the .go files in the
specified folder, and the -o flag indicates the name of the generated binary. You
can then just run the program directly by calling it by name.

For example, in the case of our chat application, we could run:

go build -o chat

./chat

Since we are compiling templates the first time the page is served, we will need
to restart your web server program every time anything changes in order to see
the changes take effect.

Modeling a chat room and clients on
the server
All users (clients) of our chat application will automatically be placed in one big
public room where everyone can chat with everyone else. The room type will be
responsible for managing client connections and routing messages in and out,
while the client type represents the connection to a single client.

Go refers to classes as types and instances of those classes as objects.

Chat Application with Web Sockets

[16]

To manage our web sockets, we are going to use one of the most powerful aspects
of the Go community—open source third-party packages. Every day new packages
solving real-world problems are released, ready for you to use in your own projects
and even allow you to add features, report and fix bugs, and get support.

It is often unwise to reinvent the wheel unless you have a very good
reason. So before embarking on building a new package, it is worth
searching for any existing projects that might have already solved
your very problem. If you find one similar project that doesn't quite
satisfy your needs, consider contributing to the project and adding
features. Go has a particularly active open source community
(remember that Go itself is open source) that is always ready to
welcome new faces or avatars.

We are going to use Gorilla Project's websocket package to handle our server-side
sockets rather than write our own. If you're curious about how it works, head over
to the project home page on GitHub, https://github.com/gorilla/websocket,
and browse the open source code.

Modeling the client
Create a new file called client.go alongside main.go in the chat folder and add
the following code:

package main
import (
 "github.com/gorilla/websocket"
)
// client represents a single chatting user.
type client struct {
 // socket is the web socket for this client.
 socket *websocket.Conn
 // send is a channel on which messages are sent.
 send chan []byte
 // room is the room this client is chatting in.
 room *room
}

In the preceding code, socket will hold a reference to the web socket that will allow
us to communicate with the client, and the send field is a buffered channel through
which received messages are queued ready to be forwarded to the user's browser
(via the socket). The room field will keep a reference to the room that the client is
chatting in—this is required so that we can forward messages to everyone else in
the room.

https://github.com/gorilla/websocket

Chapter 1

[17]

If you try to build this code, you will notice a few errors. You must ensure that you
have called go get to retrieve the websocket package, which is as easy as opening
a terminal and typing the following:

go get github.com/gorilla/websocket

Building the code again will yield another error:

./client.go:17 undefined: room

The problem is that we have referred to a room type without defining it anywhere.
To make the compiler happy, create a file called room.go and insert the following
placeholder code:

package main
type room struct {
 // forward is a channel that holds incoming messages
 // that should be forwarded to the other clients.
 forward chan []byte
}

We will improve this definition later once we know a little more about what our
room needs to do, but for now, this will allow us to proceed. Later, the forward
channel is what we will use to send the incoming messages to all other clients.

You can think of channels as an in-memory thread-safe message queue
where senders pass data and receivers read data in a non-blocking,
thread-safe way.

In order for a client to do any work, we must define some methods that will do the
actual reading and writing to and from the web socket. Adding the following code
to client.go outside (underneath) the client struct will add two methods called
read and write to the client type:

func (c *client) read() {
 for {
 if _, msg, err := c.socket.ReadMessage(); err == nil {
 c.room.forward <- msg
 } else {
 break
 }
 }

Chat Application with Web Sockets

[18]

 c.socket.Close()
}
func (c *client) write() {
 for msg := range c.send {
 if err := c.socket.WriteMessage(websocket.TextMessage, msg);
err != nil {
 break
 }
 }
 c.socket.Close()
}

The read method allows our client to read from the socket via the ReadMessage
method, continually sending any received messages to the forward channel on
the room type. If it encounters an error (such as 'the socket has died'), the loop
will break and the socket will be closed. Similarly, the write method continually
accepts messages from the send channel writing everything out of the socket via
the WriteMessage method. If writing to the socket fails, the for loop is broken
and the socket is closed. Build the package again to ensure everything compiles.

Modeling a room
We need a way for clients to join and leave rooms in order to ensure that the c.room.
forward <- msg code in the preceding section actually forwards the message to all
the clients. To ensure that we are not trying to access the same data at the same time,
a sensible approach is to use two channels: one that will add a client to the room and
another that will remove it. Let's update our room.go code to look like this:

package main

type room struct {

 // forward is a channel that holds incoming messages
 // that should be forwarded to the other clients.
 forward chan []byte
 // join is a channel for clients wishing to join the room.
 join chan *client
 // leave is a channel for clients wishing to leave the room.
 leave chan *client
 // clients holds all current clients in this room.
 clients map[*client]bool
}

Chapter 1

[19]

We have added three fields: two channels and a map. The join and leave channels
exist simply to allow us to safely add and remove clients from the clients map.
If we were to access the map directly, it is possible that two Go routines running
concurrently might try to modify the map at the same time resulting in corrupt
memory or an unpredictable state.

Concurrency programming using idiomatic
Go
Now we get to use an extremely powerful feature of Go's concurrency offerings—the
select statement. We can use select statements whenever we need to synchronize
or modify shared memory, or take different actions depending on the various
activities within our channels.

Beneath the room structure, add the following run method that contains two of
these select clauses:

func (r *room) run() {
 for {
 select {
 case client := <-r.join:
 // joining
 r.clients[client] = true
 case client := <-r.leave:
 // leaving
 delete(r.clients, client)
 close(client.send)
 case msg := <-r.forward:
 // forward message to all clients
 for client := range r.clients {
 select {
 case client.send <- msg:
 // send the message
 default:
 // failed to send
 delete(r.clients, client)
 close(client.send)
 }
 }
 }
 }
}

Chat Application with Web Sockets

[20]

Although this might seem like a lot of code to digest, once we break it down a little,
we will see that it is fairly simple, although extremely powerful. The top for loop
indicates that this method will run forever, until the program is terminated. This might
seem like a mistake, but remember, if we run this code as a Go routine, it will run in
the background, which won't block the rest of our application. The preceding code
will keep watching the three channels inside our room: join, leave, and forward.
If a message is received on any of those channels, the select statement will run the
code for that particular case. It is important to remember that it will only run one
block of case code at a time. This is how we are able to synchronize to ensure that
our r.clients map is only ever modified by one thing at a time.

If we receive a message on the join channel, we simply update the r.clients map
to keep a reference of the client that has joined the room. Notice that we are setting
the value to true. We are using the map more like a slice, but do not have to worry
about shrinking the slice as clients come and go through time—setting the value to
true is just a handy, low-memory way of storing the reference.

If we receive a message on the leave channel, we simply delete the client type
from the map, and close its send channel. Closing a channel has special significance
in Go, which becomes clear when we look at our final select case.

If we receive a message on the forward channel, we iterate over all the clients and
send the message down each client's send channel. Then, the write method of our
client type will pick it up and send it down the socket to the browser. If the send
channel is closed, then we know the client is not receiving any more messages,
and this is where our second select clause (specifically the default case) takes
the action of removing the client from the room and tidying things up.

Turning a room into an HTTP handler
Now we are going to turn our room type into an http.Handler type like we did
with the template handler earlier. As you will recall, to do this, we must simply add
a method called ServeHTTP with the appropriate signature. Add the following code
to the bottom of the room.go file:

const (
 socketBufferSize = 1024
 messageBufferSize = 256
)

Chapter 1

[21]

var upgrader = &websocket.Upgrader{ReadBufferSize:
socketBufferSize, WriteBufferSize: socketBufferSize}
func (r *room) ServeHTTP(w http.ResponseWriter, req *http.Request) {
 socket, err := upgrader.Upgrade(w, req, nil)
 if err != nil {
 log.Fatal("ServeHTTP:", err)
 return
 }
 client := &client{
 socket: socket,
 send: make(chan []byte, messageBufferSize),
 room: r,
 }
 r.join <- client
 defer func() { r.leave <- client }()
 go client.write()
 client.read()
}

The ServeHTTP method means a room can now act as a handler. We will implement
it shortly, but first let's have a look at what is going on in this snippet of code.

In order to use web sockets, we must upgrade the HTTP connection using the
websocket.Upgrader type, which is reusable so we need only create one. Then,
when a request comes in via the ServeHTTP method, we get the socket by calling
the upgrader.Upgrade method. All being well, we then create our client and pass
it into the join channel for the current room. We also defer the leaving operation
for when the client is finished, which will ensure everything is tidied up after a
user goes away.

The write method for the client is then called as a Go routine, as indicated by the
three characters at the beginning of the line go (the word go followed by a space
character). This tells Go to run the method in a different thread or goroutine.

Compare the amount of code needed to achieve multithreading
or concurrency in other languages with the three key presses that
achieve it in Go, and you will see why it has become a favorite
among systems developers.

Chat Application with Web Sockets

[22]

Finally, we call the read method in the main thread, which will block operations
(keeping the connection alive) until it's time to close it. Adding constants at the
top of the snippet is a good practice for declaring values that would otherwise be
hardcoded throughout the project. As these grow in number, you might consider
putting them in a file of their own, or at least at the top of their respective files so
they remain easy to read and modify.

Use helper functions to remove complexity
Our room is almost ready to use, although in order for it to be of any use, the
channels and map need to be created. As it is, this could be achieved by asking
the developer to use the following code to be sure to do this:

r := &room{
 forward: make(chan []byte),
 join: make(chan *client),
 leave: make(chan *client),
 clients: make(map[*client]bool),
}

Another, slightly more elegant, solution is to instead provide a newRoom function
that does this for us. This removes the need for others to know about exactly what
needs to be done in order for our room to be useful. Underneath the type room
struct definition, add this function:

// newRoom makes a new room that is ready to go.
func newRoom() *room {
 return &room{
 forward: make(chan []byte),
 join: make(chan *client),
 leave: make(chan *client),
 clients: make(map[*client]bool),
 }
}

Now the users of our code need only call the newRoom function instead of the more
verbose six lines of code.

Chapter 1

[23]

Creating and using rooms
Let's update our main function in main.go to first create and then run a room for
everybody to connect to:

func main() {
 r := newRoom()
 http.Handle("/", &templateHandler{filename: "chat.html"})
 http.Handle("/room", r)
 // get the room going
 go r.run()
 // start the web server
 if err := http.ListenAndServe(":8080", nil); err != nil {
 log.Fatal("ListenAndServe:", err)
 }
}

We are running the room in a separate Go routine (notice the go keyword again)
so that the chatting operations occur in the background, allowing our main thread
to run the web server. Our server is now finished and successfully built, but
remains useless without clients to interact with.

Building an HTML and JavaScript chat
client
In order for the users of our chat application to interact with the server and
therefore other users, we need to write some client-side code that makes use of the
web sockets found in modern browsers. We are already delivering HTML content
via the template when users hit the root of our application, so we can enhance that.

Update the chat.html file in the templates folder with the following markup:

<html>
 <head>
 <title>Chat</title>
 <style>
 input { display: block; }
 ul { list-style: none; }
 </style>
 </head>
 <body>
 <ul id="messages">

Chat Application with Web Sockets

[24]

 <form id="chatbox">
 <textarea></textarea>
 <input type="submit" value="Send" />
 </form> </body>
</html>

The preceding HTML will render a simple web form on the page containing a
text area and a Send button—this is how our users will submit messages to the
server. The messages element in the preceding code will contain the text of the
chat messages so that all the users can see what is being said. Next, we need to
add some JavaScript to add some functionality to our page. Underneath the
form tag, above the closing </body> tag, insert the following code:

 <script
src="//ajax.googleapis.com/ajax/libs/jquery/1.11.1/jquery.min.js">
</script>
 <script>
 $(function(){
 var socket = null;
 var msgBox = $("#chatbox textarea");
 var messages = $("#messages");
 $("#chatbox").submit(function(){
 if (!msgBox.val()) return false;
 if (!socket) {
 alert("Error: There is no socket connection.");
 return false;
 }
 socket.send(msgBox.val());
 msgBox.val("");
 return false;
 });
 if (!window["WebSocket"]) {
 alert("Error: Your browser does not support web
sockets.")
 } else {
 socket = new WebSocket("ws://localhost:8080/room");
 socket.onclose = function() {
 alert("Connection has been closed.");
 }
 socket.onmessage = function(e) {
 messages.append($("").text(e.data));
 }
 }

Chapter 1

[25]

 });
 </script>

The socket = new WebSocket("ws://localhost:8080/room") line is where
we open the socket and add event handlers for two key events: onclose and
onmessage. When the socket receives a message, we use jQuery to append the
message to the list element and thus present it to the user.

Submitting the HTML form triggers a call to socket.send, which is how we send
messages to the server.

Build and run the program again to ensure the templates recompile so these
changes are represented.

Navigate to http://localhost:8080/ in two separate browsers (or two tabs of
the same browser) and play with the application. You will notice that messages
sent from one client appear instantly in the other clients.

Getting more out of templates
Currently, we are using templates to deliver static HTML, which is nice because
it gives us a clean and simple way to separate the client code from the server code.
However, templates are actually much more powerful, and we are going to tweak
our application to make some more realistic use of them.

Chat Application with Web Sockets

[26]

The host address of our application (:8080) is hardcoded in two places at the
moment. The first instance is in main.go where we start the web server:

if err := http.ListenAndServe(":8080", nil); err != nil {
 log.Fatal("ListenAndServe:", err)
}

The second time it is hardcoded in the JavaScript when we open the socket:

socket = new WebSocket("ws://localhost:8080/room");

Our chat application is pretty stubborn if it insists on only running locally on port
8080, so we are going to use command-line flags to make it configurable and then
use the injection capabilities of templates to make sure our JavaScript knows the
right host.

Update your main function in main.go:

func main() {
 var addr = flag.String("addr", ":8080", "The addr of the
application.")
 flag.Parse() // parse the flags
 r := newRoom()
 http.Handle("/", &templateHandler{filename: "chat.html"})
 http.Handle("/room", r)
 // get the room going
 go r.run()
 // start the web server
 log.Println("Starting web server on", *addr)
 if err := http.ListenAndServe(*addr, nil); err != nil {
 log.Fatal("ListenAndServe:", err)
 }
}

You will need to import the flag package in order for this code to build. The
definition for the addr variable sets up our flag as a string that defaults to :8080
(with a short description of what the value is intended for). We must call flag.
Parse() that parses the arguments and extracts the appropriate information.
Then, we can reference the value of the host flag by using *addr.

The call to flag.String returns a type of *string, which is to say
it returns the address of a string variable where the value of the flag
is stored. To get the value itself (and not the address of the value), we
must use the pointer indirection operator, *.

Chapter 1

[27]

We also added a log.Println call to output the address in the terminal so we can
be sure that our changes have taken effect.

We are going to modify the templateHandler type we wrote so that it passes the
details of the request as data into the template's Execute method. In main.go,
update the ServeHTTP function to pass the request r as the data argument to the
Execute method:

func (t *templateHandler) ServeHTTP(w http.ResponseWriter, r
*http.Request) {
 t.once.Do(func() {
 t.templ =
template.Must(template.ParseFiles(filepath.Join("templates",
t.filename)))
 })
 t.templ.Execute(w, r)
}

This tells the template to render itself using data that can be extracted from http.
Request, which happens to include the host address that we need.

To use the Host value of http.Request, we can then make use of the special
template syntax that allows us to inject data. Update the line where we create
our socket in the chat.html file:

socket = new WebSocket("ws://{{.Host}}/room");

The double curly braces represent an annotation and the way we tell our template
source to inject data. {{.Host}} is essentially the equivalent of telling it to replace
the annotation with the value from request.Host (since we passed the request r
object in as data).

We have only scratched the surface of the power of the templates built
into Go's standard library. The text/template package documentation
is a great place to learn more about what you can achieve. You can find
out more about it at http://golang.org/pkg/text/template.

Rebuild and run the chat program again, but this time notice that the chatting
operations no longer produce an error, whichever host we specify:

go build -o chat
./chat -addr=":3000"

http://golang.org/pkg/text/template

Chat Application with Web Sockets

[28]

View the source of the page in the browser and notice that {{.Host}} has
been replaced with the actual host of the application. Valid hosts aren't just port
numbers; you can also specify the IP addresses or other hostnames—provided they
are allowed in your environment, for example, -addr="192.168.0.1:3000".

Tracing code to get a look under the
hood
The only way we will know that our application is working is by opening two or
more browsers and using our UI to send messages. In other words, we are manually
testing our code. This is fine for experimental projects such as our chat application
or small projects that aren't expected to grow, but if our code is to have a longer life
or be worked on by more than one person, manual testing of this kind becomes a
liability. We are not going to tackle Test-driven Development (TDD) for our chat
program, but we should explore another useful debugging technique called tracing.

Tracing is a practice by which we log or print key steps in the flow of a program to
make what is going on under the covers visible. In the previous section, we added a
log.Println call to output the address that the chat program was binding to. In this
section, we are going to formalize this and write our own complete tracing package.

We are going to explore TDD practices when writing our tracing code because it is a
perfect example of a package that we are likely to reuse, add to, share, and hopefully,
even open source.

Writing a package using TDD
Packages in Go are organized into folders, with one package per folder. It is a
build error to have differing package declarations within the same folder because
all sibling files are expected to contribute to a single package. Go has no concept of
subpackages, which means nested packages (in nested folders) exist only for aesthetic
or informational reasons but do not inherit any functionality or visibility from super
packages. In our chat application, all of our files contributed to the main package
because we wanted to build an executable tool. Our tracing package will never be
run directly, so it can and should use a different package name. We will also need
to think about the Application Programming Interface (API) of our package,
considering how to model a package so that it remains as extensible and flexible
as possible for users. This includes the fields, functions, methods, and types that
should be exported (visible to the user) and remain hidden for simplicity's sake.

Chapter 1

[29]

Go uses capitalization of names to denote which items are exported such
that names that begin with a capital letter (for example, Tracer) are
visible to users of a package, and names that begin with a lowercase
letter (for example, templateHandler) are hidden or private.

Create a new folder called trace, which will be the name of our tracing package,
alongside the chat folder.

Before we jump into the code, let's agree on some design goals for our package by
which we can measure success:

•	 The package should be easy to use
•	 Unit tests should cover the functionality
•	 Users should have the flexibility to replace the tracer with their

own implementation

Interfaces
Interfaces in Go are an extremely powerful language feature that allow us to
define an API without being strict or specific on the implementation details.
Wherever possible, describing the basic building blocks of your packages using
interfaces usually ends up paying dividends down the road, and this is where
we will start for our tracing package.

Create a new file called tracer.go inside the trace folder and write the
following code:

package trace
// Tracer is the interface that describes an object capable of
// tracing events throughout code.
type Tracer interface {
 Trace(...interface{})
}

The first thing to notice is that we have defined our package as trace.

While it is a good practice to have the folder name match the package
name, Go tools do not enforce it, which means you are free to name
them differently if it makes sense. Remember, when people import
your package, they will type the name of the folder, and if suddenly
a package with a different name is imported, it could get confusing.

Chat Application with Web Sockets

[30]

Our Tracer type (the capital T means we intend this to be a publicly visible type)
is an interface that describes a single method called Trace. The ...interface{}
argument type states that our Trace method will accept zero or more arguments
of any type. You might think that this is redundant since the method should just
take a single string (we want to just trace out some string of characters, don't we?).
However, consider functions such as fmt.Sprint and log.Fatal, both of which
follow a pattern littered through to Go's standard library that provides a helpful
shortcut when trying to communicate multiple things in one go. Wherever possible,
we should follow such patterns and practices because we want our own APIs to be
familiar and clear to the Go community.

Unit tests
We promised ourselves we would follow test-driven practices, but interfaces
are simply definitions that do not provide any implementation and so cannot
be directly tested. But we are about to write a real implementation of a Tracer
method, and we will indeed write the tests first.

Create a new file called tracer_test.go in the trace folder and insert the
following scaffold code:

package trace
import (
 "testing"
)
func TestNew(t *testing.T) {
 t.Error("We haven't written our test yet")
}

Testing was built into the Go tool chain from the very beginning, making writing
automatable tests a first-class citizen. The test code lives alongside the production
code in files suffixed with _test.go. The Go tools will treat any function that starts
with Test (taking a single *testing.T argument) as a unit test, and it will be
executed when we run our tests. To run them for this package, navigate to the
trace folder in a terminal and do the following:

go test

You will see that our tests fail because of our call to t.Error in the body of our
TestNew function:

--- FAIL: TestNew (0.00 seconds)

Chapter 1

[31]

 tracer_test.go:8: We haven't written our test yet

FAIL

exit status 1

FAIL trace	 0.011s

Clearing the terminal before each test run is a great way to make
sure you aren't confusing previous runs with the most recent one.
On Windows, you can use the cls command; on Unix machines,
the clear command does the same thing.

Obviously, we haven't properly written our test and we don't expect it to pass yet,
so let's update the TestNew function:

func TestNew(t *testing.T) {
 var buf bytes.Buffer
 tracer := New(&buf)
 if tracer == nil {
 t.Error("Return from New should not be nil")
 } else {
 tracer.Trace("Hello trace package.")
 if buf.String() != "Hello trace package.\n" {
 t.Errorf("Trace should not write '%s'.", buf.String())
 }
 }
}

Most packages throughout the book are available from the Go standard library, so
you can add an import statement for the appropriate package in order to access the
package. Others are external, and that's when you need to use go get to download
them before they can be imported. For this case, you'll need to add import "bytes"
to the top of the file.

We have started designing our API by becoming the first user of it. We want to
be able to capture the output of our tracer in a bytes.Buffer so that we can then
ensure that the string in the buffer matches the expected value. If it does not, a call
to t.Errorf will fail the test. Before that, we check to make sure the return from a
made-up New function is not nil; again, if it is, the test will fail because of the call
to t.Error.

Chat Application with Web Sockets

[32]

Red-green testing
Running go test now actually produces an error; it complains that there is no New
function. We haven't made a mistake here; we are following a practice known as
red-green testing. Red-green testing proposes that we first write a unit test, see it fail
(or produce an error), write the minimum amount of code possible to make that test
pass, and rinse and repeat it again. The key point here being that we want to make
sure the code we add is actually doing something as well as ensuring that the test
code we write is testing something meaningful.

Consider a meaningless test for a minute:
if true == true {
 t.Error("True should be true")

}

It is logically impossible for true to not be true (if true ever equals false,
it's time to get a new computer), and so our test is pointless. If a test or
claim cannot fail, there is no value whatsoever to be found in it.
Replacing true with a variable that you expect to be set to true under
certain conditions would mean that such a test can indeed fail (like
when the code being tested is misbehaving)—at this point, you have
a meaningful test that is worth contributing to the code base.

You can treat the output of go test like a to-do list, solving only one problem at a
time. Right now, the complaint about the missing New function is all we will address.
In the trace.go file, let's add the minimum amount of code possible to progress
with things; add the following snippet underneath the interface type definition:

func New() {}

Running go test now shows us that things have indeed progressed, albeit not
very far. We now have two errors:

./tracer_test.go:11: too many arguments in call to New

./tracer_test.go:11: New(&buf) used as value

The first error tells us that we are passing arguments to our New function, but the New
function doesn't accept any. The second error says that we are using the return of the
New function as a value, but that the New function doesn't return anything. You might
have seen this coming, and indeed as you gain more experience writing test-driven
code, you will most likely jump over such trivial details. However, to properly
illustrate the method, we are going to be pedantic for a while. Let's address the
first error by updating our New function to take in the expected argument:

func New(w io.Writer) {}

Chapter 1

[33]

We are taking an argument that satisfies the io.Writer interface, which means that
the specified object must have a suitable Write method.

Using existing interfaces, especially ones found in the Go standard
library, is an extremely powerful and often necessary way to ensure
that your code is as flexible and elegant as possible.

Accepting io.Writer means that the user can decide where the tracing output will
be written. This output could be the standard output, a file, network socket, bytes.
Buffer as in our test case, or even some custom-made object, provided it implements
the Write method of the io.Writer interface

Running go test again shows us that we have resolved the first error and we only
need add a return type in order to progress past our second error:

func New(w io.Writer) Tracer {}

We are stating that our New function will return a Tracer, but we do not return
anything, which go test happily complains about:

./tracer.go:13: missing return at end of function

Fixing this is easy; we can just return nil from the New function:

func New(w io.Writer) Tracer {
 return nil
}

Of course, our test code has asserted that the return should not be nil, so go test
now gives us a failure message:

tracer_test.go:14: Return from New should not be nil

You can see how a strict adherence to the red-green principle can get
a little tedious, but it is vital that we do not jump too far ahead. If we
were to write a lot of implementation code in one go, we will very
likely have code that is not covered by a unit test.
The ever-thoughtful core team has even solved this problem for us by
providing code coverage statistics which we can generate by running
the following command:
go test -cover

Provided that all tests pass, adding the -cover flag will tell us how
much of our code was touched during the execution of the tests.
Obviously, the closer we get to 100 percent the better.

Chat Application with Web Sockets

[34]

Implementing the interface
To satisfy this test, we need something that we can properly return from the New
method because Tracer is only an interface and we have to return something real.
Let's add an implementation of a tracer to our tracer.go file:

type tracer struct {
 out io.Writer
}

func (t *tracer) Trace(a ...interface{}) {}

Our implementation is extremely simple; the tracer type has an io.Writer field
called out which is where we will write the trace output to. And the Trace method
exactly matches the method required by the Tracer interface, although it doesn't
do anything yet.

Now we can finally fix the New method:

func New(w io.Writer) Tracer {
 return &tracer{out: w}
}

Running go test again shows us that our expectation was not met because nothing
was written during our call to Trace:

tracer_test.go:18: Trace should not write ''.

Let's update our Trace method to write the blended arguments to the specified
io.Writer field:

func (t *tracer) Trace(a ...interface{}) {
 t.out.Write([]byte(fmt.Sprint(a...)))
 t.out.Write([]byte("\n"))
}

When the Trace method is called, we call Write on the io.Writer stored in the
out field and use fmt.Sprint to format the a arguments. We convert the string
return type from fmt.Sprint to string and then to []byte because that is what is
expected by the io.Writer interface.

Have we finally satisfied our test?

go test -cover

PASS

Chapter 1

[35]

coverage: 100.0% of statements

ok trace	 0.011s

Congratulations! We have successfully passed our test and have 100.0% test
coverage. Once we have finished our glass of champagne, we can take a minute
to consider something very interesting about our implementation.

Unexported types being returned to users
The tracer struct type we wrote is unexported because it begins with a lowercase
t, so how is it that we are able to return it from the exported New function? After all,
doesn't the user receive the returned object? This is perfectly acceptable and valid
Go code; the user will only ever see an object that satisfies the Tracer interface and
will never even know about our private tracer type. Since they only ever interact
with the interface anyway, it wouldn't matter if our tracer implementation exposed
other methods or fields; they would never be seen. This allows us to keep the public
API of our package clean and simple.

This hidden implementation technique is used throughout the Go standard library,
for example, the ioutil.NopCloser method is a function that turns a normal
io.Reader into io.ReadCloser whereas the Close method does nothing (used for
when io.Reader objects that don't need to be closed are passed into functions that
require io.ReadCloser types). The method returns io.ReadCloser as far as the
user is concerned, but under the hood, there is a secret nopCloser type hiding the
implementation details.

To see this for yourself, browse the Go standard library source code
at http://golang.org/src/pkg/io/ioutil/ioutil.go and
search for the nopCloser struct.

Using our new trace package
Now that we have completed the first version of our trace package, we can use it
in our chat application in order to better understand what is going on when users
send messages through the user interface.

In room.go, let's import our new package and make some calls to the Trace
method. The path to the trace package we just wrote will depend on your GOPATH
environment variable because the import path is relative to the $GOPATH/src folder.
So if you create your trace package in $GOPATH/src/mycode/trace, then you
would need to import mycode/trace.

http://golang.org/src/pkg/io/ioutil/ioutil.go

Chat Application with Web Sockets

[36]

Update the room type and the run() method like this:

type room struct {
 // forward is a channel that holds incoming messages
 // that should be forwarded to the other clients.
 forward chan []byte
 // join is a channel for clients wishing to join the room.
 join chan *client
 // leave is a channel for clients wishing to leave the room.
 leave chan *client
 // clients holds all current clients in this room.
 clients map[*client]bool
 // tracer will receive trace information of activity
 // in the room.
 tracer trace.Tracer
}
func (r *room) run() {
 for {
 select {
 case client := <-r.join:
 // joining
 r.clients[client] = true
 r.tracer.Trace("New client joined")
 case client := <-r.leave:
 // leaving
 delete(r.clients, client)
 close(client.send)
 r.tracer.Trace("Client left")
 case msg := <-r.forward:
 r.tracer.Trace("Message received: ", string(msg))
 // forward message to all clients
 for client := range r.clients {
 select {
 case client.send <- msg:
 // send the message
 r.tracer.Trace(" -- sent to client")
 default:
 // failed to send
 delete(r.clients, client)
 close(client.send)
 r.tracer.Trace(" -- failed to send, cleaned up client")
 }
 }
 }
 }
}

Chapter 1

[37]

We added a trace.Tracer field to our room type and then made periodic calls to
the Trace method peppered throughout the code. If we run our program and try
to send messages, you'll notice that the application panics because the tracer
field is nil. We can remedy this for now by making sure we create and assign an
appropriate object when we create our room type. Update the main.go file to do this:

r := newRoom()
r.tracer = trace.New(os.Stdout)

We are using our New method to create an object that will send the output to the
os.Stdout standard output pipe (this is a technical way of saying we want it to
print the output to our terminal).

Now rebuild and run the program and use two browsers to play with the
application, and notice that the terminal now has some interesting trace
information for us:

New client joined

New client joined

Message received: Hello Chat

 -- sent to client

 -- sent to client

Message received: Good morning :)

 -- sent to client

 -- sent to client

Client left

Client left

Now we are able to use the debug information to get an insight into what the
application is doing, which will assist us when developing and supporting
our project.

Making tracing optional
Once the application is released, the sort of tracing information we are generating will
be pretty useless if it's just printed out to some terminal somewhere, or even worse, if
it creates a lot of noise for our systems administrators. Also, remember that when we
don't set a tracer for our room type, our code panics, which isn't a very user-friendly
situation. To resolve these two issues, we are going to enhance our trace package with
a trace.Off() method that will return an object that satisfies the Tracer interface but
will not do anything when the Trace method is called.

Chat Application with Web Sockets

[38]

Let's add a test that calls the Off function to get a silent tracer before making a call to
Trace to ensure the code doesn't panic. Since the tracing won't happen, that's all we
can do in our test code. Add the following test function to the tracer_test.go file:

func TestOff(t *testing.T) {
 var silentTracer Tracer = Off()
 silentTracer.Trace("something")
}

To make it pass, add the following code to the tracer.go file:

type nilTracer struct{}
func (t *nilTracer) Trace(a ...interface{}) {}
// Off creates a Tracer that will ignore calls to Trace.
func Off() Tracer {
 return &nilTracer{}
}

Our nilTracer struct has defined a Trace method that does nothing, and a call
to the Off() method will create a new nilTracer struct and return it. Notice
that our nilTracer struct differs from our tracer struct in that it doesn't take
an io.Writer; it doesn't need one because it isn't going to write anything.

Now let's solve our second problem by updating our newRoom method in the room.
go file:

func newRoom() *room {
 return &room{
 forward: make(chan []byte),
 join: make(chan *client),
 leave: make(chan *client),
 clients: make(map[*client]bool),
 tracer: trace.Off(),
 }
}

By default, our room type will be created with a nilTracer struct and any calls to
Trace will just be ignored. You can try this out by removing the r.tracer = trace.
New(os.Stdout) line from the main.go file: notice that nothing gets written to the
terminal when you use the application and there is no panic.

Chapter 1

[39]

Clean package APIs
A quick glance at the API (in this context, the exposed variables, methods, and types)
for our trace package highlights that a simple and obvious design has emerged:

•	 The New() method
•	 The Off() method
•	 The Tracer interface

I would be very confident to give this package to a Go programmer without any
documentation or guidelines, and I'm pretty sure they would know what do to with it.

In Go, adding documentation is as simple as adding comments to the
line before each item. The blog post on the subject is a worthwhile read
(http://blog.golang.org/godoc-documenting-go-code),
where you can see a copy of the hosted source code for tracer.go that
is an example of how you might annotate the trace package. For more
information, refer to github.com/matryer/goblueprints/blob/
master/chapter1/trace/tracer.go.

Summary
In this chapter, we developed a complete concurrent chat application and our own
simple package to trace the flow of our programs to help us better understand what
is going on under the hood.

We used the net/http package to quickly build what turned out to be a very powerful
concurrent HTTP web server. In one particular case, we then upgraded the connection
to open a web socket between the client and server. This means that we can easily and
quickly communicate messages to the user's web browser without having to write
messy polling code. We explored how templates are useful to separate the code from
the content as well as to allow us to inject data into our template source, which let
us make the host address configurable. Command-line flags helped us give simple
configuration control to the people hosting our application while also letting us
specify sensible defaults.

Our chat application made use of Go's powerful concurrency capabilities that allowed
us to write clear threaded code in just a few lines of idiomatic Go. By controlling the
coming and going of clients through channels, we were able to set synchronization
points in our code that prevented us from corrupting memory by attempting to
modify the same objects at the same time.

http://blog.golang.org/godoc-documenting-go-code
github.com/matryer/goblueprints/blob/master/chapter1/trace/tracer.go
github.com/matryer/goblueprints/blob/master/chapter1/trace/tracer.go

Chat Application with Web Sockets

[40]

We learned how interfaces such as http.Handler and our own trace.Tracer
allow us to provide disparate implementations without having to touch the code
that makes use of them, and in some cases, without having to expose even the
name of the implementation to our users. We saw how just by adding a ServeHTTP
method to our room type, we turned our custom room concept into a valid HTTP
handler object, which managed our web socket connections.

We aren't actually very far away from being able to properly release our application,
except for one major oversight: you cannot see who sent each message. We have
no concept of users or even user names, and for a real chat application, this is
not acceptable.

In the next chapter, we will add the names of the people responding to their
messages in order to make them feel like they are having a real conversation
with other humans.

Adding Authentication
The chat application we built in the previous chapter focused on high-performance
transmission of messages from the clients to the server and back again, but our
users have no way of knowing who they are talking to. One solution to this problem
is building of some kind of signup and login functionality and letting our users
create accounts and authenticate themselves before they can open the chat page.

Whenever we are about to build something from scratch, we must ask ourselves how
others have solved this problem before (it is extremely rare to encounter genuinely
original problems), and whether any open solutions or standards already exist that
we can make use of. Authorization and authentication are hardly new problems,
especially in the world of the Web, with many different protocols out there to choose
from. So how do we decide on the best option to pursue? As always, we must look
at this question from the point of view of the user.

A lot of websites these days allow you to sign in using your accounts existing
elsewhere on a variety of social media or community websites. This saves users
the tedious job of entering all their account information over and over again as
they decide to try out different products and services. It also has a positive effect
on the conversion rates for new sites.

In this chapter, we will enhance our chat codebase to add authentication, which
will allow our users to sign in using Google, Facebook, or GitHub and you'll see
how easy it is to add other sign-in portals too. In order to join the chat, users must
first sign in. Following this, we will use the authorized data to augment our user
experience so everyone knows who is in the room, and who said what.

In this chapter, you will learn to:

•	 Use the decorator pattern to wrap http.Handler types to add additional
functionality to handlers

•	 Serve HTTP endpoints with dynamic paths

Adding Authentication

[42]

•	 Use the Gomniauth open source project to access authentication services
•	 Get and set cookies using the http package
•	 Encode objects as Base64 and back to normal again
•	 Send and receive JSON data over a web socket
•	 Give different types of data to templates
•	 Work with channels of your own types

Handlers all the way down
For our chat application, we implemented our own http.Handler type in order
to easily compile, execute, and deliver HTML content to browsers. Since this is a
very simple but powerful interface, we are going to continue to use it wherever
possible when adding functionality to our HTTP processing.

In order to determine whether a user is authenticated, we will create an
authentication wrapper handler that performs the check, and passes execution
on to the inner handler only if the user is authenticated.

Our wrapper handler will satisfy the same http.Handler interface as the object
inside it, allowing us to wrap any valid handler. In fact, even the authentication
handler we are about to write could be later encapsulated inside a similar
wrapper if needed.

Diagram of a chaining pattern when applied to HTTP handlers

Chapter 2

[43]

The preceding figure shows how this pattern could be applied in a more complicated
HTTP handler scenario. Each object implements the http.Handler interface,
which means that object could be passed into the http.Handle method to directly
handle a request, or it can be given to another object, which adds some kind of extra
functionality. The Logging handler might write to a logfile before and after the
ServeHTTP method is called on the inner handler. Because the inner handler is just
another http.Handler, any other handler can be wrapped in (or decorated with)
the Logging handler.

It is also common for an object to contain logic that decides which inner handler
should be executed. For example, our authentication handler will either pass the
execution to the wrapped handler, or handle the request itself by issuing a redirect
to the browser.

That's plenty of theory for now; let's write some code. Create a new file called auth.
go in the chat folder:

package main
import (
 "net/http"
)
type authHandler struct {
 next http.Handler
}
func (h *authHandler) ServeHTTP(w http.ResponseWriter, r
*http.Request) {
 if _, err := r.Cookie("auth"); err == http.ErrNoCookie {
 // not authenticated
 w.Header().Set("Location", "/login")
 w.WriteHeader(http.StatusTemporaryRedirect)
 } else if err != nil {
 // some other error
 panic(err.Error())
 } else {
 // success - call the next handler
 h.next.ServeHTTP(w, r)
 }
}
func MustAuth(handler http.Handler) http.Handler {
 return &authHandler{next: handler}
}

Adding Authentication

[44]

The authHandler type not only implements the ServeHTTP method (which satisfies
the http.Handler interface) but also stores (wraps) http.Handler in the next field.
Our MustAuth helper function simply creates authHandler that wraps any other
http.Handler. Let's tweak the following root mapping line:

http.Handle("/", &templateHandler{filename: "chat.html"})

Let's change the first argument to make it explicit about the page meant for
chatting. Next, let's use the MustAuth function to wrap templateHandler for
the second argument:

http.Handle("/chat", MustAuth(&templateHandler{filename:
"chat.html"}))

Wrapping templateHandler with the MustAuth function will cause execution
to run first through our authHandler, and only to templateHandler if the request
is authenticated.

The ServeHTTP method in our authHandler will look for a special cookie called
auth, and use the Header and WriteHeader methods on http.ResponseWriter
to redirect the user to a login page if the cookie is missing.

Build and run the chat application and try to hit http://localhost:8080/chat:

go build -o chat

./chat -host=":8080"

You need to delete your cookies to clear out previous auth
tokens, or any other cookies that might be left over from
other development projects served through localhost.

If you look in the address bar of your browser, you will notice that you are
immediately redirected to the /login page. Since we cannot handle that path
yet, you'll just get a 404 page not found error.

Making a pretty social sign-in page
So far we haven't paid much attention to making our application look nice, after
all this book is about Go and not user-interface development. However, there is no
excuse for building ugly apps, and so we will build a social sign-in page that is as
pretty as it is functional.

Chapter 2

[45]

Bootstrap is a frontend framework used to develop responsive projects on the Web.
It provides CSS and JavaScript code that solve many user-interface problems in a
consistent and good-looking way. While sites built using Bootstrap all tend to look
the same (although there are plenty of ways in which the UI can be customized), it
is a great choice for early versions of apps, or for developers who don't have access
to designers.

If you build your application using the semantic standards set forth by
Bootstrap, it becomes easy for you to make a Bootstrap theme for your
site or application and you know it will slot right into your code.

We will use the version of Bootstrap hosted on a CDN so we don't have to worry
about downloading and serving our own version through our chat application.
This means that in order to render our pages properly, we will need an active
Internet connection, even during development.

If you prefer to download and host your own copy of Bootstrap, you
can do so. Keep the files in an assets folder and add the following
call to your main function (it uses http.Handle to serve the assets
via your application):

http.Handle("/assets/", http.StripPrefix("/assets",
http.FileServer(http.Dir("/path/to/assets/"))))

Notice how the http.StripPrefix and http.FileServer
functions return objects that satisfy the http.Handler interface as
per the decorator pattern that we implement with our MustAuth
helper function.

In main.go, let's add an endpoint for the login page:

http.Handle("/chat", MustAuth(&templateHandler{filename:
"chat.html"}))
http.Handle("/login", &templateHandler{filename: "login.html"})
http.Handle("/room", r)

Obviously, we do not want to use the MustAuth method for our login page because
it will cause an infinite redirection loop.

Create a new file called login.html inside our templates folder, and insert the
following HTML code:

<html>
 <head>
 <title>Login</title>
 <link rel="stylesheet"

Adding Authentication

[46]

 href="//netdna.bootstrapcdn.com/bootstrap/3.1.1/css/
 bootstrap.min.css">
 </head>
 <body>
 <div class="container">
 <div class="page-header">
 <h1>Sign in</h1>
 </div>
 <div class="panel panel-danger">
 <div class="panel-heading">
 <h3 class="panel-title">In order to chat, you must be
 signed in</h3>
 </div>
 <div class="panel-body">
 <p>Select the service you would like to sign in
 with:</p>

 Facebook

 GitHub

 Google

 </div>
 </div>
 </div>
 </body>
</html>

Restart the web server and navigate to http://localhost:8080/login. You will
notice that it now displays our sign-in page:

Chapter 2

[47]

Endpoints with dynamic paths
Pattern matching for the http package in the Go standard library isn't the most
comprehensive and fully featured implementation out there. For example, Ruby
on Rails makes it much easier to have dynamic segments inside the path:

"auth/:action/:provider_name"

This then provides a data map (or dictionary) containing the values that the framework
automatically extracted from the matched path. So if you visit auth/login/google,
then params[:provider_name] would equal google, and params[:action] would
equal login.

The most the http package lets us specify by default is a path prefix, which we
can do by leaving a trailing slash at the end of the pattern:

"auth/"

We would then have to manually parse the remaining segments to extract the
appropriate data. This is acceptable for relatively simple cases, which suits our
needs for the time being since we only need to handle a few different paths such as:

•	 /auth/login/google

•	 /auth/login/facebook

•	 /auth/callback/google

•	 /auth/callback/facebook

If you need to handle more advanced routing situations, you might
want to consider using dedicated packages such as Goweb, Pat,
Routes, or mux. For extremely simple cases such as ours, the built-in
capabilities will do.

We are going to create a new handler that powers our login process. In auth.go,
add the following loginHandler code:

// loginHandler handles the third-party login process.
// format: /auth/{action}/{provider}
func loginHandler(w http.ResponseWriter, r *http.Request) {
 segs := strings.Split(r.URL.Path, "/")
 action := segs[2]
 provider := segs[3]
 switch action {
 case "login":
 log.Println("TODO handle login for", provider)

Adding Authentication

[48]

 default:
 w.WriteHeader(http.StatusNotFound)
 fmt.Fprintf(w, "Auth action %s not supported", action)
 }
}

In the preceding code, we break the path into segments using strings.Split before
pulling out the values for action and provider. If the action value is known, we
will run the specific code; otherwise, we will write out an error message and return
an http.StatusNotFound status code (which in the language of HTTP status code,
is a 404 code).

We will not bullet-proof our code right now but it's worth noticing that
if someone hits loginHandler with too few segments, our code will
panic because it expects segs[2] and segs[3] to exist.
For extra credit, see whether you can protect against this and return a
nice error message instead of a panic if someone hits /auth/nonsense.

Our loginHandler is only a function and not an object that implements the http.
Handler interface. This is because, unlike other handlers, we don't need it to store
any state. The Go standard library supports this, so we can use the http.HandleFunc
function to map it in a way similar to how we used http.Handle earlier. In main.go,
update the handlers:

http.Handle("/chat", MustAuth(&templateHandler{filename:
"chat.html"}))
http.Handle("/login", &templateHandler{filename: "login.html"})
http.HandleFunc("/auth/", loginHandler)
http.Handle("/room", r)

Rebuild and run the chat application:

go build –o chat

./chat –host=":8080"

Hit the following URLs and notice the output logged in the terminal:

•	 http://localhost:8080/auth/login/google outputs TODO handle
login for google

•	 http://localhost:8080/auth/login/facebook outputs TODO handle
login for facebook

We have successfully implemented a dynamic path-matching mechanism that so
far just prints out to-do messages; next we need to write code that integrates with
the authentication services.

Chapter 2

[49]

OAuth2
OAuth2 is an open authentication and authorization standard designed to allow
resource owners to give clients delegated access to private data (such as wall posts
or tweets) via an access token exchange handshake. Even if you do not wish to access
the private data, OAuth2 is a great option that allows people to sign in using their
existing credentials, without exposing those credentials to a third-party site. In this
case, we are the third party and we want to allow our users to sign in using services
that support OAuth2.

From a user's point of view, the OAuth2 flow is:

1.	 A user selects provider with whom they wish to sign in to the client app.
2.	 The user is redirected to the provider's website (with a URL that includes the

client app ID) where they are asked to give permission to the client app.
3.	 The user signs in from the OAuth2 service provider and accepts the

permissions requested by the third-party application.
4.	 The user is redirected back to the client app with a request code.
5.	 In the background, the client app sends the grant code to the provider,

who sends back an auth token.
6.	 The client app uses the access token to make authorized requests to the

provider, such as to get user information or wall posts.

To avoid reinventing the wheel, we will look at a few open source projects that
have already solved this problem for us.

Open source OAuth2 packages
Andrew Gerrand has been working on the core Go team since February 2010,
that is two years before Go 1.0 was officially released. His goauth2 package
(see https://code.google.com/p/goauth2/) is an elegant implementation
of the OAuth2 protocol written entirely in Go.

Andrew's project inspired Gomniauth (see https://github.com/stretchr/
gomniauth). An open source Go alternative to Ruby's omniauth project, Gomniauth
provides a unified solution to access different OAuth2 services. In the future, when
OAuth3 (or whatever next-generation authentication protocol it is) comes out, in
theory, Gomniauth could take on the pain of implementing the details, leaving the
user code untouched.

https://code.google.com/p/goauth2/
https://github.com/stretchr/gomniauth
https://github.com/stretchr/gomniauth

Adding Authentication

[50]

For our application, we will use Gomniauth to access OAuth services provided by
Google, Facebook, and GitHub, so make sure you have it installed by running the
following command:

go get github.com/stretchr/gomniauth

Some of the project dependencies of Gomniauth are kept in Bazaar
repositories, so you'll need to head over to http://wiki.bazaar.
canonical.com to download them.

Tell the authentication providers about
your app
Before we ask an authentication provider to help our users sign in, we must tell them
about our application. Most providers have some kind of web tool or console where
you can create applications to kick-start the process. Here's one from Google:

In order to identify the client application, we need to create a client ID and secret.
Despite the fact that OAuth2 is an open standard, each provider has their own
language and mechanism to set things up, so you will most likely have to play
around with the user interface or the documentation to figure it out in each case.

http://wiki.bazaar.canonical.com
http://wiki.bazaar.canonical.com

Chapter 2

[51]

At the time of writing this, in Google Developer Console, you navigate to APIs &
auth | Credentials and click on the Create new Client ID button.

In most cases, for added security, you have to be explicit about the host URLs
from where requests will come. For now, since we're hosting our app locally on
localhost:8080, you should use that. You will also be asked for a redirect URI that
is the endpoint in our chat application and to which the user will be redirected after
successfully signing in. The callback will be another action on our loginHandler, so
the redirection URL for the Google client will be http://localhost:8080/auth/
callback/google.

Once you finish the authentication process for the providers you want to support,
you will be given a client ID and secret for each provider. Make a note of these,
because we will need them when we set up the providers in our chat application.

If we host our application on a real domain, we have to create new
client IDs and secrets, or update the appropriate URL fields on our
authentication providers to ensure that they point to the right place.
Either way, it's not bad practice to have a different set of development
and production keys for security.

Implementing external logging in
In order to make use of the projects, clients, or accounts that we created on the
authentication provider sites, we have to tell Gomniauth which providers we want
to use, and how we will interact with them. We do this by calling the WithProviders
function on the primary Gomniauth package. Add the following code snippet to main.
go (just underneath the flag.Parse() line towards the top of the main function):

// set up gomniauth
gomniauth.SetSecurityKey("some long key")
gomniauth.WithProviders(
 facebook.New("key", "secret",
 "http://localhost:8080/auth/callback/facebook"),
 github.New("key", "secret",
 "http://localhost:8080/auth/callback/github"),
 google.New("key", "secret",
 "http://localhost:8080/auth/callback/google"),
)

Adding Authentication

[52]

You should replace the key and secret placeholders with the actual values you
noted down earlier. The third argument represents the callback URL that should
match the ones you provided when creating your clients on the provider's website.
Notice the second path segment is callback; while we haven't implemented this
yet, this is where we handle the response from the authentication process.

As usual, you will need to ensure all the appropriate packages are imported:

import (
 "github.com/stretchr/gomniauth/providers/facebook"
 "github.com/stretchr/gomniauth/providers/github"
 "github.com/stretchr/gomniauth/providers/google"
)

Gomniauth requires the SetSecurityKey call because it sends state
data between the client and server along with a signature checksum,
which ensures that the state values haven't been tempered with while
transmitting. The security key is used when creating the hash in a way
that it is almost impossible to recreate the same hash without knowing
the exact security key. You should replace some long key with a
security hash or phrase of your choice.

Logging in
Now that we have configured Gomniauth, we need to redirect users to the provider's
authentication page when they land on our /auth/login/{provider} path. We just
have to update our loginHandler function in auth.go:

func loginHandler(w http.ResponseWriter, r *http.Request) {
 segs := strings.Split(r.URL.Path, "/")
 action := segs[2]
 provider := segs[3]
 switch action {
 case "login":
 provider, err := gomniauth.Provider(provider)
 if err != nil {
 log.Fatalln("Error when trying to get provider", provider,
"-", err)
 }
 loginUrl, err := provider.GetBeginAuthURL(nil, nil)
 if err != nil {

Chapter 2

[53]

 log.Fatalln("Error when trying to GetBeginAuthURL for",
provider, "-", err)
 }
 w.Header.Set("Location",loginUrl)
 w.WriteHeader(http.StatusTemporaryRedirect)
 default:
 w.WriteHeader(http.StatusNotFound)
 fmt.Fprintf(w, "Auth action %s not supported", action)
 }
}

We do two main things here. First, we use the gomniauth.Provider function to get
the provider object that matches the object specified in the URL (such as google or
github). Then we use the GetBeginAuthURL method to get the location where we
must send users in order to start the authentication process.

The GetBeginAuthURL(nil, nil) arguments are for the state
and options respectively, which we are not going to use for our chat
application.
The first argument is a state map of data that is encoded, and signed
and sent to the authentication provider. The provider doesn't do
anything with the state, it just sends it back to our callback endpoint.
This is useful if, for example, we want to redirect the user back to
the original page they were trying to access before the authentication
process intervened. For our purpose, we have only the /chat
endpoint, so we don't need to worry about sending any state.
The second argument is a map of additional options that will be
sent to the authentication provider, which somehow modifies the
behavior of the authentication process. For example, you can specify
your own scope parameter, which allows you to make a request for
permission to access additional information from the provider. For
more information about the available options, search for OAuth2 on
the Internet or read the documentation for each provider, as these
values differ from service to service.

If our code gets no error from the GetBeginAuthURL call, we simply redirect the
user's browser to the returned URL.

Rebuild and run the chat application:

go build -o chat

./chat -host=":8080"

Adding Authentication

[54]

Open the main chat page by accessing http://localhost:8080/chat. As we aren't
logged in yet, we are redirected to our sign-in page. Click on the Google option to
sign in using your Google account, and you will notice that you are presented with
a Google-specific sign-in page (if you are not already signed in to Google). Once you
are signed in, you will be presented with a page asking you to give permission for
our chat application before you can view basic information about your account:

This is the same flow that users of our chat application will experience when
signing in.

Click on Accept and you will notice that you are redirected back to our application
code, but presented with an Auth action callback not supported error. This is
because we haven't yet implemented the callback functionality in loginHandler.

Handling the response from the provider
Once the user clicks on Accept on the provider's website (or if they click on the
equivalent of Cancel), they will be redirected back to the callback endpoint in
our application.

A quick glance at the complete URL that comes back shows us the grant code that
the provider has given us.

http://localhost:8080/auth/callback/google?code=4/Q92xJ-
BQfoX6PHhzkjhgtyfLc0Ylm.QqV4u9AbA9sYguyfbjFEsNoJKMOjQI

Chapter 2

[55]

We don't have to worry about what to do with this code because Gomniauth will
process the OAuth URL parameters for us (by sending the grant code to Google
servers and exchanging it for an access token as per the OAuth specification), so
we can simply jump to implementing our callback handler. However, it's worth
knowing that this code will be exchanged by the authentication provider for a token
that allows us to access private user data. For added security, this additional step
happens behind the scenes, from server to server rather than in the browser.

In auth.go, we are ready to add another switch case to our action path segment.
Insert the following code above the default case:

case "callback":

 provider, err := gomniauth.Provider(provider)
 if err != nil {
 log.Fatalln("Error when trying to get provider", provider, "-
", err)
 }

 creds, err :=
provider.CompleteAuth(objx.MustFromURLQuery(r.URL.RawQuery))
 if err != nil {
 log.Fatalln("Error when trying to complete auth for",
provider, "-", err)
 }

 user, err := provider.GetUser(creds)
 if err != nil {
 log.Fatalln("Error when trying to get user from", provider, "-
", err)
 }

 authCookieValue := objx.New(map[string]interface{}{
 "name": user.Name(),
 }).MustBase64()
 http.SetCookie(w, &http.Cookie{
 Name: "auth",
 Value: authCookieValue,
 Path: "/"})

 w.Header()["Location"] = []string{"/chat"}
 w.WriteHeader(http.StatusTemporaryRedirect)

Adding Authentication

[56]

When the authentication provider redirects the users back after they have granted
permission, the URL specifies that it is a callback action. We look up the authentication
provider as we did before, and call its CompleteAuth method. We parse the RawQuery
from the http.Request (the GET request that the user's browser is now making) into
objx.Map (the multi-purpose map type that Gomniauth uses) and the CompleteAuth
method uses the URL query parameter values to complete the authentication
handshake with the provider. All being well, we will be given some authorized
credentials with which we access our user's basic data. We then use the GetUser
method for the provider and Gomniauth uses the specified credentials to access
some basic information about the user.

Once we have the user data, we Base64-encode the Name field in a JSON object and
store it as the value to our auth cookie for later use.

Base64-encoding of data ensures it won't contain any special or
unpredictable characters, like passing data in a URL or storing it in a
cookie. Remember that although Base64-encoded data looks encrypted,
it is not—you can easily decode Base64-encoded data back into the
original text with little effort. There are online tools that do this for you.

After setting the cookie, we redirect the user to the chat page, which we can safely
assume was the original destination.

Once you build and run the code again and hit the /chat page, you will notice
that the signup flow works, and we are finally allowed back to the chat page. Most
browsers have an inspector or a console—a tool that allows you to view the cookies
that the server has sent you—that you can use to see whether the auth cookie has
appeared:

go build –o chat

./chat –host=":8080"

In our case, the cookie value is eyJuYW1lIjoiTWF0IFJ5ZXIifQ==, which is a
Base64-encoded version of {"name":"Mat Ryer"}. Remember, we never typed
in a name in our chat application; instead, Gomniauth asked Google for a name
when we opted to sign in with Google. Storing non-signed cookies like this is fine
for incidental information such as a user's name, however, you should avoid storing
any sensitive information using non-signed cookies, as it's easy for people to access
and change the data.

Chapter 2

[57]

Presenting the user data
Having the user data inside a cookie is a good start, but nontechnical people will
never even know it's there, so we must bring the data to the fore. We will do this
by enhancing our templateHandler method that first passes the user data into
the template's Execute method; this allows us to use template annotations in our
HTML to display the user data to the users.

Update the ServeHTTP method of our templateHandler in main.go:

func (t *templateHandler) ServeHTTP(w http.ResponseWriter, r
*http.Request) {
 t.once.Do(func() {
 t.templ =
template.Must(template.ParseFiles(filepath.Join("templates",
t.filename)))
 })
 data := map[string]interface{}{
 "Host": r.Host,
 }
 if authCookie, err := r.Cookie("auth"); err == nil {
 data["UserData"] = objx.MustFromBase64(authCookie.Value)
 }

 t.templ.Execute(w, data)
}

Instead of just passing the entire http.Request object to our template as data,
we are creating a new map[string]interface{} definition for a data object that
potentially has two fields: Host and UserData (the latter will only appear if an auth
cookie is present). By specifying the map type followed by curly braces, we are able
to add the Host entry at the same time as making our map. We then pass this new
data object as the second argument to the Execute method on our template.

Now we add an HTML file to our template source to display the name. Update the
chatbox form in chat.html:

<form id="chatbox">
 {{.UserData.name}}:

 <textarea></textarea>
 <input type="submit" value="Send" />
</form>

Adding Authentication

[58]

The {{.UserData.name}} annotation tells the template engine to insert our user's
name before the textarea control.

Since we're using the objx package, don't forget to run go get
http://github.com/stretchr/objx, and import it.

Rebuild and run the chat application again, and you will notice the addition of your
name before the chat box:

go build -o chat

./chat –host=":8080"

Augmenting messages with additional data
So far, our chat application has only transmitted messages as slices of bytes or []
byte types between the client and the server; therefore, our forward channel for
our room has the chan []byte type. In order to send data (such as who sent it and
when) in addition to the message itself, we enhance our forward channel and also
how we interact with the web socket on both ends.

Define a new type that will replace the []byte slice by creating a new file called
message.go in the chat folder:

package main
import (
 "time"
)
// message represents a single message
type message struct {
 Name string
 Message string
 When time.Time
}

The message type will encapsulate the message string itself, but we have also added
the Name and When fields that respectively hold the user's name and a timestamp of
when the message was sent.

Chapter 2

[59]

Since the client type is responsible for communicating with the browser, it needs
to transmit and receive more than just the single message string. As we are talking
to a JavaScript application (that is the chat client running in the browser) and the Go
standard library has a great JSON implementation, this seems the perfect choice to
encode additional information in the messages. We will change the read and write
methods in client.go to use the ReadJSON and WriteJSON methods on the socket,
and we will encode and decode our new message type:

func (c *client) read() {
 for {
 var msg *message
 if err := c.socket.ReadJSON(&msg); err == nil {
 msg.When = time.Now()
 msg.Name = c.userData["name"].(string)
 c.room.forward <- msg
 } else {
 break
 }
 }
 c.socket.Close()
}
func (c *client) write() {
 for msg := range c.send {
 if err := c.socket.WriteJSON(msg); err != nil {
 break
 }
 }
 c.socket.Close()
}

When we receive a message from the browser, we will expect to populate only
the Message field, which is why we set the When and Name fields ourselves in the
preceding code.

You will notice that when you try to build the preceding code, it complains about a
few things. The main reason is that we are trying to send a *message object down
our forward and send chan []byte channels. This is not allowed until we change
the type of the channel. In room.go, change the forward field to be of type chan
*message, and do the same for the send chan type in client.go.

Adding Authentication

[60]

We must update the code that initializes our channels since the types have now
changed. Alternatively, you can wait for the compiler to raise these issues and fix
them as you go. In room.go, you need to make the following changes:

•	 Change forward: make(chan []byte) to forward: make(chan
*message)

•	 Change r.tracer.Trace("Message received: ", string(msg)) to
r.tracer.Trace("Message received: ", msg.Message)

•	 Change send: make(chan []byte, messageBufferSize) to send:
make(chan *message, messageBufferSize)

The compiler will also complain about the lack of user data on a client, which is a fair
point because the client type has no idea about the new user data we have added
to the cookie. Update the client struct to include a new map[string]interface{}
called userData:

// client represents a single chatting user.
type client struct {
 // socket is the web socket for this client.
 socket *websocket.Conn
 // send is a channel on which messages are sent.
 send chan *message
 // room is the room this client is chatting in.
 room *room
 // userData holds information about the user
 userData map[string]interface{}
}

The user data comes from the client cookie that we access through the http.Request
objects's Cookie method. In room.go, update ServeHTTP with the following changes:

func (r *room) ServeHTTP(w http.ResponseWriter, req *http.Request) {
 socket, err := upgrader.Upgrade(w, req, nil)
 if err != nil {
 log.Fatal("ServeHTTP:", err)
 return
 }

 authCookie, err := req.Cookie("auth")
 if err != nil {
 log.Fatal("Failed to get auth cookie:", err)
 return
 }

Chapter 2

[61]

 client := &client{
 socket: socket,
 send: make(chan *message, messageBufferSize),
 room: r,
 userData: objx.MustFromBase64(authCookie.Value),
 }
 r.join <- client
 defer func() { r.leave <- client }()
 go client.write()
 client.read()
}

We use the Cookie method on the http.Request type to get our user data before
passing it to the client. We are using the objx.MustFromBase64 method to convert
our encoded cookie value back into a usable map object.

Now that we have changed the type being sent and received on the socket from
[]byte to *message, we must tell our JavaScript client that we are sending JSON
instead of just a plain string. Also we must ask that it send JSON back to the server
when a user submits a message. In chat.html, first update the socket.send call:

socket.send(JSON.stringify({"Message": msgBox.val()}));

We are using JSON.stringify to serialize the specified JSON object (containing just
the Message field) into a string, which is then sent to the server. Our Go code will
decode (or unmarshal) the JSON string into a message object, matching the field
names from the client JSON object with those of our message type.

Finally, update the socket.onmessage callback function to expect JSON, and also
add the name of the sender to the page:

socket.onmessage = function(e) {
 var msg = eval("("+e.data+")");
 messages.append(
 $("").append(
 $("").text(msg.Name + ": "),
 $("").text(msg.Message)
)
);
}

In the preceding code snippet, we've used JavaScript's eval function to turn the
JSON string into a JavaScript object, and then access the fields to build up the
elements needed to properly display them.

Adding Authentication

[62]

Build and run the application, and if you can, log in with two different accounts in
two different browsers (or invite a friend to help you test it):

go build -o chat

./chat -host=":8080"

The following screenshot shows the chat application's browser chat screens:

Summary
In this chapter, we added a useful and necessary feature to our chat application
by asking users to authenticate themselves using OAuth2 service providers, before
allowing them to join the conversation. We made use of several open source packages
such as Objx and Gomniauth, which dramatically reduced the amount of multi-server
complexity we would otherwise need to deal with.

We implemented a pattern when we wrapped http.Handler types to allow us
to easily specify which paths require the user to be authenticated, and which were
available even without an auth cookie. Our MustAuth helper function allowed us
to generate the wrapper types in a fluent and simple way, without adding clutter
and confusion to our code.

Chapter 2

[63]

We saw how to use cookies and Base64-encoding to safely (although not securely)
store the state of particular users in their browser, and to make use of that data over
normal connections and through web sockets. We took more control of the data
available to our templates in order to provide the name of the user to the UI, and
saw how to only provide certain data under specific conditions.

Since we needed to send and receive additional information over the web socket, we
learned how easy it was to change channels of native types into channels that work
with types of our own such as our message type. We also learned how to transmit
JSON objects over the socket, rather than just slices of bytes. Thanks to the type safety
of Go, and the ability to specify types for channels, the compiler helps ensure that we
do not send anything other than message objects through chan *message. Attempting
to do so would result in a compiler error, alerting us to the fact right away.

To see the name of the person chatting is a great leap forward in usability from the
application we built in the previous chapter, but it's very formal and might not attract
modern users of the Web, who are used to a much more visual experience. We are
missing pictures of people chatting, and in the next chapter, we will explore different
ways in which we can allow users to better represent themselves in our application.

As an extra assignment, see if you can make use of the time.Time field that we put
into the message type to tell users when the messages were sent.

Three Ways to Implement
Profile Pictures

So far, our chat application has made use of the OAuth2 protocol to allow users to
sign in to our application so that we know who is saying what. In this chapter, we
are going to add profile pictures to make the chatting experience more engaging.

We will look at the following ways to add pictures or avatars alongside the messages
in our application:

•	 Using the avatar picture provided by the authentication server
•	 Using the Gravatar.com web service to look up a picture by the user's

e-mail address
•	 Allowing the user to upload their own picture and host it themselves

The first two options allow us to delegate the hosting of pictures to a third
party—either an authentication service or Gravatar.com—which is great
because it reduces the cost of hosting our application (in terms of storage costs
and bandwidth, since the user's browsers will actually download the pictures
from the servers of the authenticating service, not ours). The third option requires
us to host pictures ourselves at a location that is web accessible.

These options aren't mutually exclusive; you will most likely use some combination
of them in a real-world production application. Towards the end of the chapter, we
will see how the flexible design that emerges allows us to try each implementation
in turn, until we find an appropriate avatar.

Gravatar.com
Gravatar.com

Three Ways to Implement Profile Pictures

[66]

We are going to be agile with our design throughout this chapter, doing the minimum
work needed to accomplish each milestone. This means that at the end of each section,
we will have working implementations that are demonstrable in the browser. This also
means that we will refactor code as and when we need to and discuss the rationale
behind the decisions we make as we go.

Specifically, in this chapter, you will learn the following:

•	 What are good practices to get additional information from authentication
services, even when there are no standards in place

•	 When it is appropriate to build abstractions into our code
•	 How Go's zero-initialization pattern can save time and memory
•	 How reusing an interface allows us to work with collections and individual

objects in the same way as the existing interface did
•	 How to use the Gravatar.com web service
•	 How to do MD5 hashing in Go
•	 How to upload files over HTTP and store them on a server
•	 How to serve static files through a Go web server
•	 How to use unit tests to guide the refactoring of code
•	 How and when to abstract functionality from struct types into interfaces

Avatars from the authentication server
It turns out that most authentication servers already have images for their users,
and they make them available through the protected user resource that we already
know how to access in order to get our users' names. To use this avatar picture, we
need to get the URL from the provider, store it in the cookie for our user, and send
it through a web socket so that every client can render the picture alongside the
corresponding message.

Getting the avatar URL
The schema for user or profile resources is not part of the OAuth2 spec, which means
that each provider is responsible for deciding how to represent that data. Indeed,
providers do things differently, for example, the avatar URL in a GitHub user
resource is stored in a field called avatar_url, whereas in Google, the same field
is called picture. Facebook goes even further by nesting the avatar URL value in a
url field inside an object called picture. Luckily, Gomniauth abstracts this for us;
its GetUser call on a provider standardizes the interface to get common fields.

Gravatar.com

Chapter 3

[67]

In order to make use of the avatar URL field, we need to go back and store its
information in our cookie. In auth.go, look inside the callback action switch
case and update the code that creates the authCookieValue object as follows:

authCookieValue := objx.New(map[string]interface{}{
 "name": user.Name(),
 "avatar_url": user.AvatarURL(),
}).MustBase64()

The AvatarURL method called in the preceding code will return the appropriate URL
value which we then store in the avatar_url field which will be stored in the cookie.

Gomniauth defines a User type of interface and each provider
implements their own version. The generic map[string]interface{}
data returned from the authentication server is stored inside each object,
and the method calls access the appropriate value using the right field
name for that provider. This approach—describing the way information
is accessed without being strict about implementation details—is a great
use of interfaces in Go.

Transmitting the avatar URL
We need to update our message type so that it can also carry with it the avatar URL.
In message.go, add the AvatarURL string field:

type message struct {
 Name string
 Message string
 When time.Time
 AvatarURL string
}

So far, we have not actually assigned a value to AvatarURL like we do for the Name
field, so we must update our read method in client.go:

func (c *client) read() {
 for {
 var msg *message
 if err := c.socket.ReadJSON(&msg); err == nil {
 msg.When = time.Now()
 msg.Name = c.userData["name"].(string)
 if avatarUrl, ok := c.userData["avatar_url"]; ok {
 msg.AvatarURL = avatarUrl.(string)
 }
 c.room.forward <- msg
 } else {

Three Ways to Implement Profile Pictures

[68]

 break
 }
 }
 c.socket.Close()
}

All we have done here is we took the value from the userData field that represents
what we put into the cookie and assigned it to the appropriate field in message if
the value was present in the map. We will now take the additional step of checking
whether the value is present because we cannot guarantee that the authentication
service will provide a value for this field. And since it could be nil, it might cause
a panic to assign it to a string type if it's actually missing.

Adding the avatar to the user interface
Now that our JavaScript client gets an avatar URL value via the socket, we can use
it to display the image alongside the messages. We do this by updating the socket.
onmessage code in chat.html:

socket.onmessage = function(e) {
 var msg = eval("("+e.data+")");
 messages.append(
 $("").append(
 $("").css({
 width:50,
 verticalAlign:"middle"
 }).attr("src", msg.AvatarURL),
 $("").text(msg.Name + ": "),
 $("").text(msg.Message)
)
);
}

When we receive a message, we will insert an img tag with the source set to the
AvatarURL field from the message. We will use jQuery's css method to force a
width of 50 pixels. This protects us from massive pictures spoiling our interface
and allows us to align the image to the middle of the surrounding text.

If we build and run our application having logged in with a previous version,
you will find that the auth cookie that doesn't contain the avatar URL is still there.
We are not asked to sign in again (since we are already logged in), and the code
that adds the avatar_url field never gets a chance to run. We could delete our
cookie and refresh the page, but we would have to keep doing so whenever we
make changes during development. Let's solve this problem properly by adding
a logout feature.

Chapter 3

[69]

Logging out
The simplest way to log a user out is to get rid of the auth cookie and redirect the
user to the chat page, which will in turn cause a redirect to the login page since we
just removed the cookie. We do this by adding a new HandleFunc call to main.go:

http.HandleFunc("/logout", func(w http.ResponseWriter, r
*http.Request) {
 http.SetCookie(w, &http.Cookie{
 Name: "auth",
 Value: "",
 Path: "/",
 MaxAge: -1,
 })
 w.Header()["Location"] = []string{"/chat"}
 w.WriteHeader(http.StatusTemporaryRedirect)
})

The preceding handler function uses http.SetCookie to update the cookie setting
MaxAge to -1, which indicates that it should be deleted immediately by the browser.
Not all browsers are forced to delete the cookie, which is why we also provide a new
Value setting of an empty string, thus removing the user data that would previously
have been stored.

As an additional assignment, you can bulletproof your app a little by
updating the first line in ServeHTTP for your authHandler in auth.
go to make it cope with the empty-value case as well as the missing-
cookie case:

if cookie, err := r.Cookie("auth"); err ==
http.ErrNoCookie || cookie.Value == ""

Instead of ignoring the return of r.Cookie, we keep a reference to the
returned cookie (if there was actually one) and also add an additional
check to see whether the Value string of the cookie is empty or not.

Before we continue, let's add a Sign Out link to make it even easier to get rid of the
cookie, and also to allow our users to log out. In chat.html, update the chatbox
form to insert a simple HTML link to the new /logout handler:

<form id="chatbox">
 {{.UserData.name}}:

 <textarea></textarea>
 <input type="submit" value="Send" />
 or sign out
</form>

Three Ways to Implement Profile Pictures

[70]

Now build and run the application and open a browser to localhost:8080/chat:

go build –o chat

./chat –host=:8080

Log out if you need to and log back in. When you click on Send, you will see your
avatar picture appear next to your messages.

Making things prettier
Our application is starting to look a little ugly, and it's time to do something about
it. In the previous chapter, we implemented the Bootstrap library into our login page,
and we are now going to extend its use to our chat page. We will make three changes
in chat.html: include Bootstrap and tweak the CSS styles for our page, change the
markup for our form, and tweak how we render messages on the page.

First, let's update the style tag at the top of the page and insert a link tag above it
to include Bootstrap:

<link rel="stylesheet"
href="//netdna.bootstrapcdn.com/bootstrap/3.1.1/css/bootstrap.min.
css">
<style>
 ul#messages { list-style: none; }
 ul#messages li { margin-bottom: 2px; }

Chapter 3

[71]

 ul#messages li img { margin-right: 10px; }
</style>

Next, let's replace the markup at the top of the body tag (before the script tags)
with the following code:

<div class="container">
 <div class="panel panel-default">
 <div class="panel-body">
 <ul id="messages">
 </div>
 </div>
 <form id="chatbox" role="form">
 <div class="form-group">
 <label for="message">Send a message as
 {{.UserData.name}}</label> or Sign
 out
 <textarea id="message" class="form-control"></textarea>
 </div>
 <input type="submit" value="Send" class="btn btn-default" />
 </form>
</div>

This markup follows Bootstrap standards of applying appropriate classes to various
items, for example, the form-control class neatly formats elements within form
(you can check out the Bootstrap documentation for more information on what
these classes do).

Finally, let's update our socket.onmessage JavaScript code to put the sender's
name as the title attribute for our image. This makes our app display the image
when you hover the mouse over it rather than displaying it next to every message:

socket.onmessage = function(e) {
 var msg = eval("("+e.data+")");
 messages.append(
 $("").append(
 $("").attr("title", msg.Name).css({
 width:50,
 verticalAlign:"middle"
 }).attr("src", msg.AvatarURL),
 $("").text(msg.Message)
)
);
}

Three Ways to Implement Profile Pictures

[72]

Build and run the application and refresh your browser to see whether a new
design appears:

go build –o chat

./chat –host=:8080

The preceding command shows the following output:

With relatively few changes to the code, we have dramatically improved the look
and feel of our application.

Implementing Gravatar
Gravatar is a web service that allows users to upload a single profile
picture and associate it with their e-mail address to make it available from
any website. Developers, like us, can access those images for our application,
just by performing a GET operation on a specific API endpoint. In this section,
we will see how to implement Gravatar rather than use the picture provided
by the authentication service.

Chapter 3

[73]

Abstracting the avatar URL process
Since we have three different ways of obtaining the avatar URL in our application,
we have reached the point where it would be sensible to learn how to abstract the
functionality in order to cleanly implement the options. Abstraction refers to a
process in which we separate the idea of something from its specific implementation.
http.Handler is a great example of how a handler will be used along with its ins
and outs, without being specific about what action is taken by each handler.

In Go, we start to describe our idea of getting an avatar URL by defining an interface.
Let's create a new file called avatar.go and insert the following code:

package main
import (
 "errors"
)
// ErrNoAvatar is the error that is returned when the
// Avatar instance is unable to provide an avatar URL.
var ErrNoAvatarURL = errors.New("chat: Unable to get an avatar
URL.")
// Avatar represents types capable of representing
// user profile pictures.
type Avatar interface {
 // GetAvatarURL gets the avatar URL for the specified client,
 // or returns an error if something goes wrong.
 // ErrNoAvatarURL is returned if the object is unable to get
 // a URL for the specified client.
 GetAvatarURL(c *client) (string, error)
}

The Avatar interface describes the GetAvatarURL method that a type must satisfy in
order to be able to get avatar URLs. We took the client as an argument so that we know
for which user to return the URL. The method returns two arguments: a string (which
will be the URL if things go well) and an error in case something goes wrong.

One of the things that could go wrong is simply that one of the specific
implementations of Avatar is unable to get the URL. In that case, GetAvatarURL
will return the ErrNoAvatarURL error as the second argument. The ErrNoAvatarURL
error therefore becomes a part of the interface; it's one of the possible returns from
the method and something that users of our code should probably explicitly handle.
We mention this in the comments part of the code for the method, which is the only
way to communicate such design decisions in Go.

Three Ways to Implement Profile Pictures

[74]

Because the error is initialized immediately using errors.New and
stored in the ErrNoAvatarURL variable, only one of these objects
will ever be created; passing the pointer of the error as a return is very
inexpensive. This is unlike Java's checked exceptions—which serve a
similar purpose—where expensive exception objects are created and
used as part of the control flow.

The authentication service and avatar's
implementation
The first implementation of Avatar we write will replace the existing functionality
where we hardcoded the avatar URL obtained from the authentication service. Let's
use a Test-driven Development (TDD) approach so we can be sure our code works
without having to manually test it. Let's create a new file called avatar_test.go in
the chat folder:

package main
import "testing"
func TestAuthAvatar(t *testing.T) {
 var authAvatar AuthAvatar
 client := new(client)
 url, err := authAvatar.GetAvatarURL(client)
 if err != ErrNoAvatarURL {
 t.Error("AuthAvatar.GetAvatarURL should return ErrNoAvatarURL
when no value present")
 }
 // set a value
 testUrl := "http://url-to-gravatar/"
 client.userData = map[string]interface{}{"avatar_url": testUrl}
 url, err = authAvatar.GetAvatarURL(client)
 if err != nil {
 t.Error("AuthAvatar.GetAvatarURL should return no error when
value present")
 } else {
 if url != testUrl {
 t.Error("AuthAvatar.GetAvatarURL should return correct URL")
 }
 }
}

Chapter 3

[75]

This test file contains a test for our as-of-yet nonexistent AuthAvatar type's
GetAvatarURL method. First, it uses a client with no user data and ensures that
the ErrNoAvatarURL error is returned. After setting a suitable value, our test calls
the method again—this time to assert that it returns the correct value. However,
building this code fails because the AuthAvatar type doesn't exist, so we'll declare
authAvatar next.

Before we write our implementation, it's worth noticing that we only declare the
authAvatar variable as the AuthAvatar type, but never actually assign anything to
it so its value remains nil. This is not a mistake; we are actually making use of Go's
zero-initialization (or default initialization) capabilities. Since there is no state needed
for our object (we will pass client as an argument), there is no need to waste time and
memory on initializing an instance of it. In Go, it is acceptable to call a method on a nil
object, provided that the method doesn't try to access a field. When we actually come
to writing our implementation, we will look at a way in which we can ensure this is
the case.

Let's head back over to avatar.go and make our test pass. Add the following code
to the bottom of the file:

type AuthAvatar struct{}
var UseAuthAvatar AuthAvatar
func (_ AuthAvatar) GetAvatarURL(c *client) (string, error) {
 if url, ok := c.userData["avatar_url"]; ok {
 if urlStr, ok := url.(string); ok {
 return urlStr, nil
 }
 }
 return "", ErrNoAvatarURL
}

Here, we define our AuthAvatar type as an empty struct and define the
implementation of the GetAvatarURL method. We also create a handy variable
called UseAuthAvatar that has the AuthAvatar type but which remains of nil
value. We can later assign the UseAuthAvatar variable to any field looking for
an Avatar interface type.

Normally, the receiver of a method (the type defined in parentheses before the
name) will be assigned to a variable so that it can be accessed in the body of the
method. Since, in our case, we assume the object can have nil value, we can use
an underscore to tell Go to throw away the reference. This serves as an added
reminder to ourselves that we should avoid using it.

Three Ways to Implement Profile Pictures

[76]

The body of our implementation is otherwise relatively simple: we are safely looking
for the value of avatar_url and ensuring it is a string before returning it. If anything
fails along the way, we return the ErrNoAvatarURL error as defined in the interface.

Let's run the tests by opening a terminal and then navigating to the chat folder and
typing the following:

go test

All being well, our tests will pass and we will have successfully created our first
Avatar implementation.

Using an implementation
When we use an implementation, we could refer to either the helper variables
directly or create our own instance of the interface whenever we need the functionality.
However, this would defeat the very object of the abstraction. Instead, we use the
Avatar interface type to indicate where we need the capability.

For our chat application, we will have a single way to obtain an avatar URL per chat
room. So let's update the room type so it can hold an Avatar object. In room.go, add
the following field definition to the type room struct:

// avatar is how avatar information will be obtained.
avatar Avatar

Update the newRoom function so we can pass in an Avatar implementation for use;
we will just assign this implementation to the new field when we create our room
instance:

// newRoom makes a new room that is ready to go.
func newRoom(avatar Avatar) *room {
 return &room{
 forward: make(chan *message),
 join: make(chan *client),
 leave: make(chan *client),
 clients: make(map[*client]bool),
 tracer: trace.Off(),
 avatar: avatar,
 }
}

Building the project now will highlight the fact that the call to newRoom in main.go is
broken because we have not provided an Avatar argument; let's update it by passing
in our handy UseAuthAvatar variable as follows:

r := newRoom(UseAuthAvatar)

Chapter 3

[77]

We didn't have to create an instance of AuthAvatar, so no memory was allocated.
In our case, this doesn't result in great savings (since we only have one room for our
whole application), but imagine the size of the potential savings if our application
has thousands of rooms. The way we named the UseAuthAvatar variable means that
the preceding code is very easy to read and it also makes our intention obvious.

Thinking about code readability is important when designing
interfaces. Consider a method that takes a Boolean input—just passing
in true or false hides the real meaning if you don't know the argument
names. Consider defining a couple of helper constants as in the
following short example:

func move(animated bool) { /* ... */ }

const Animate = true

const DontAnimate = false

Think about which of the following calls to move are easier to
understand:

move(true)

move(false)

move(Animate)
move(DontAnimate)

All that is left now is to change client to use our new Avatar interface. In client.
go, update the read method as follows:

func (c *client) read() {
 for {
 var msg *message
 if err := c.socket.ReadJSON(&msg); err == nil {
 msg.When = time.Now()
 msg.Name = c.userData["name"].(string)
 msg.AvatarURL, _ = c.room.avatar.GetAvatarURL(c)
 c.room.forward <- msg
 } else {
 break
 }
 }
 c.socket.Close()
}

Here, we are asking the avatar instance on room to get the avatar URL for us instead
of extracting it from userData ourselves.

Three Ways to Implement Profile Pictures

[78]

When you build and run the application, you will notice that (although we have
refactored things a little) the behavior and user experience hasn't changed at all.
This is because we told our room to use the AuthAvatar implementation.

Now let's add another implementation to the room.

Gravatar implementation
The Gravatar implementation in Avitar will do the same job as the AuthAvatar
implementation, except it will generate a URL for a profile picture hosted on
Gravatar.com. Let's start by adding a test to our avatar_test.go file:

func TestGravatarAvatar(t *testing.T) {
 var gravatarAvitar GravatarAvatar
 client := new(client)
 client.userData = map[string]interface{}{"email":
"MyEmailAddress@example.com"}
 url, err := gravatarAvitar.GetAvatarURL(client)
 if err != nil {
 t.Error("GravatarAvitar.GetAvatarURL should not return an
error")
 }
 if url !=
"//www.gravatar.com/avatar/0bc83cb571cd1c50ba6f3e8a78ef1346" {
 t.Errorf("GravatarAvitar.GetAvatarURL wrongly returned %s",
url)
 }
}

Gravatar uses a hash of the e-mail address to generate a unique ID for each profile
picture, so we set up a client and ensure userData contains an e-mail address. Next,
we call the same GetAvatarURL method, but this time on an object that has the
GravatarAvatar type. We then assert that a correct URL was returned. We already
know this is the appropriate URL for the specified e-mail address because it is listed
as an example in the Gravatar documentation—a great strategy to ensure our code is
doing what it should be.

Recall that all the source code for this book is available on GitHub.
You can save time on building the preceding core by copying and
pasting bits and pieces from https://github.com/matryer/
goblueprints. Hardcoding things such as the base URL is not
usually a good idea; we have hardcoded throughout the book to
make the code snippets easier to read and more obvious, but you
are welcome to extract them as you go along if you like.

Gravatar.com
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints

Chapter 3

[79]

Running these tests (with go test) obviously causes errors because we haven't
defined our types yet. Let's head back to avatar.go and add the following code
while being sure to import the io package:

type GravatarAvatar struct{}
var UseGravatar GravatarAvatar
func (_ GravatarAvatar) GetAvatarURL(c *client) (string, error) {
 if email, ok := c.userData["email"]; ok {
 if emailStr, ok := email.(string); ok {
 m := md5.New()
 io.WriteString(m, strings.ToLower(emailStr))
 return fmt.Sprintf("//www.gravatar.com/avatar/%x",
m.Sum(nil)), nil
 }
 }
 return "", ErrNoAvatarURL
}

We used the same pattern as we did for AuthAvatar: we have an empty struct, a
helpful UseGravatar variable, and the GetAvatarURL method implementation itself.
In this method, we follow Gravatar's guidelines to generate an MD5 hash from the
e-mail address (after we ensured it was lowercase) and append it to the hardcoded
base URL.

It is very easy to achieve hashing in Go, thanks to the hard work put in by the
writers of the Go standard library. The crypto package has an impressive array of
cryptography and hashing capabilities—all very easy to use. In our case, we create
a new md5 hasher; because the hasher implements the io.Writer interface, we can
use io.WriteString to write a string of bytes to it. Calling Sum returns the current
hash for the bytes written.

You might have noticed that we end up hashing the e-mail address every
time we need the avatar URL. This is pretty inefficient, especially at scale,
but we should prioritize getting stuff done over optimization. If we need
to, we can always come back later and change the way this works.

Running the tests now shows us that our code is working, but we haven't yet
included an e-mail address in the auth cookie. We do this by locating the code where
we assign to the authCookieValue object in auth.go and updating it to grab the
Email value from Gomniauth:

authCookieValue := objx.New(map[string]interface{}{
 "name": user.Name(),

Three Ways to Implement Profile Pictures

[80]

 "avatar_url": user.AvatarURL(),
 "email": user.Email(),
}).MustBase64()

The final thing we must do is tell our room to use the Gravatar implementation
instead of the AuthAvatar implementation. We do this by calling newRoom in main.
go and making the following change:

r := newRoom(UseGravatar)

Build and run the chat program once again and head to the browser. Remember,
since we have changed the information stored in the cookie, we must sign out and
sign back in again in order to see our changes take effect.

Assuming you have a different image for your Gravatar account, you will notice
that the system is now pulling the image from Gravatar instead of the authentication
provider. Using your browser's inspector or debug tool will show you that the src
attribute of the img tag has indeed changed.

If you don't have a Gravatar account, you'll likely see a default placeholder image
in place of your profile picture.

Chapter 3

[81]

Uploading an avatar picture
In the third and final approach of uploading a picture, we will look at how to allow
users to upload an image from their local hard drive to use as their profile picture
when chatting. We will need a way to associate a file with a particular user to ensure
that we associate the right picture with the corresponding messages.

User identification
In order to uniquely identify our users, we are going to copy Gravatar's approach by
hashing their e-mail address and using the resulting string as an identifier. We will
store the user ID in the cookie along with the rest of the user-specific data. This will
actually have the added benefit of removing from GravatarAuth the inefficiency
associated with continuous hashing.

In auth.go, replace the code that creates the authCookieValue object with the
following code:

m := md5.New()
io.WriteString(m, strings.ToLower(user.Name()))
userId := fmt.Sprintf("%x", m.Sum(nil))
// save some data
authCookieValue := objx.New(map[string]interface{}{
 "userid": userId,
 "name": user.Name(),
 "avatar_url": user.AvatarURL(),
 "email": user.Email(),
}).MustBase64()

Here we have hashed the e-mail address and stored the resulting value in the userid
field at the point at which the user logs in. Henceforth, we can use this value in our
Gravatar code instead of hashing the e-mail address for every message. To do this,
first we update the test by removing the following line from avatar_test.go:

client.userData = map[string]interface{}{"email":
"MyEmailAddress@example.com"}

We then replace the preceding line with this line:

client.userData = map[string]interface{}{"userid":
"0bc83cb571cd1c50ba6f3e8a78ef1346"}

Three Ways to Implement Profile Pictures

[82]

We no longer need to set the email field since it is not used; instead, we just have
to set an appropriate value to the new userid field. However, if you run go test
in a terminal, you will see this test fail.

To make the test pass, in avatar.go, update the GetAvatarURL method for the
GravatarAuth type:

func (_ GravatarAvatar) GetAvatarURL(c *client) (string, error) {
 if userid, ok := c.userData["userid"]; ok {
 if useridStr, ok := userid.(string); ok {
 return "//www.gravatar.com/avatar/" + useridStr, nil
 }
 }
 return "", ErrNoAvatarURL
}

This won't change the behavior, but it allows us to make an unexpected
optimization, which is a great example of why you shouldn't optimize code
too early—the inefficiencies that you spot early on may not last long enough
to warrant the effort required to fix them.

An upload form
If our users are to upload a file as their avatar, they need a way to browse their
local hard drive and submit the file to the server. We facilitate this by adding a
new template-driven page. In the chat/templates folder, create a file called
upload.html:

<html>
 <head>
 <title>Upload</title>
 <link rel="stylesheet"
 href="//netdna.bootstrapcdn.com/bootstrap/3.1.1/css/
 bootstrap.min.css">
 </head>
 <body>
 <div class="container">
 <div class="page-header">
 <h1>Upload picture</h1>
 </div>
 <form role="form" action="/uploader"
 enctype="multipart/form-data" method="post">
 <input type="hidden" name="userid"
 value="{{.UserData.userid}}" />

Chapter 3

[83]

 <div class="form-group">
 <label for="message">Select file</label>
 <input type="file" name="avatarFile" />
 </div>
 <input type="submit" value="Upload" class="btn " />
 </form>
 </div>
 </body>
</html>

We used Bootstrap again to make our page look nice and also to make it fit in with the
other pages. However, the key point to note here is the HTML form that will provide
the user interface necessary for uploading files. The action points to /uploader, the
handler for which we have yet to implement, and the enctype attribute must be
multipart/form-data so the browser can transmit binary data over HTTP. Then,
there is an input element of the type file, which will contain the reference to the
file we want to upload. Notice also that we have included the userid value from the
UserData map as a hidden input—this will tell us which user is uploading a file. It is
important that the name attributes are correct, as this is how we will refer to the data
when we implement our handler on the server.

Let's now map the new template to the /upload path in main.go:

http.Handle("/upload", &templateHandler{filename: "upload.html"})

Handling the upload
When the user clicks on Upload after selecting a file, the browser will send the
data for the file as well as the user ID to /uploader, but right now, that data doesn't
actually go anywhere. We will implement a new HandlerFunc that is capable of
receiving the file, reading the bytes that are streamed through the connection, and
saving it as a new file on the server. In the chat folder, let's create a new folder
called avatars—this is where we will save the avatar image files.

Next, create a new file called upload.go and insert the following code—make sure
to add the appropriate package name and imports (which are ioutils, net/http,
io, and path):

func uploaderHandler(w http.ResponseWriter, req *http.Request) {
 userId := req.FormValue("userid")
 file, header, err := req.FormFile("avatarFile")
 if err != nil {
 io.WriteString(w, err.Error())
 return
 }

Three Ways to Implement Profile Pictures

[84]

 data, err := ioutil.ReadAll(file)
 if err != nil {
 io.WriteString(w, err.Error())
 return
 }
 filename := path.Join("avatars", userId+path.Ext(header.Filename))
 err = ioutil.WriteFile(filename, data, 0777)
 if err != nil {
 io.WriteString(w, err.Error())
 return
 }
 io.WriteString(w, "Successful")
}

Here, first uploaderHandler uses the FormValue method on http.Request
to get the user ID that we placed in the hidden input in our HTML form. Then it
gets an io.Reader type capable of reading the uploaded bytes by calling req.
FormFile, which returns three arguments. The first argument represents the file
itself with the multipart.File interface type, which is also an io.Reader. The
second is a multipart.FileHeader object that contains metadata about the file,
such as the filename. And finally, the third argument is an error that we hope
will have a nil value.

What do we mean when we say that the multipart.File interface type is also
an io.Reader? Well, a quick glance at the documentation at http://golang.org/
pkg/mime/multipart/#File makes it clear that the type is actually just a wrapper
interface for a few other more general interfaces. This means that a multipart.
File type can be passed to methods that require io.Reader, since any object
that implements multipart.File must therefore implement io.Reader.

Embedding standard library interfaces to describe new concepts
is a great way to make sure your code works in as many contexts
as possible. Similarly, you should try to write code that uses the
simplest interface type you can find, ideally from the standard
library. For example, if you wrote a method that needed to read the
contents of a file, you could ask the user to provide an argument of
the type multipart.File. However, if you ask for io.Reader
instead, your code will become significantly more flexible because
any type that has the appropriate Read method can be passed in,
which includes user-defined types too.

http://golang.org/pkg/mime/multipart/#File
http://golang.org/pkg/mime/multipart/#File

Chapter 3

[85]

The ioutil.ReadAll method will just keep reading from the specified io.Reader
until all of the bytes have been received, so this is where we actually receive the
stream of bytes from the client. We then use path.Join and path.Ext to build a
new filename using userid, and copy the extension from the original filename
that we can get from multipart.FileHeader.

We then use the ioutil.WriteFile method to create a new file in the avatars
folder. We use userid in the filename to associate the image with the correct user,
much in the same way as Gravatar does. The 0777 value specifies that the new file
we create has full file permissions, which is a good default setting if you're not sure
what other permissions should be set.

If an error occurs at any stage, our code will write it out to the response, which will
help us debug it, or it will write Successful if everything went well.

In order to map this new handler function to /uploader, we need to head back to
main.go and add the following line to func main:

http.HandleFunc("/uploader", uploaderHandler)

Now build and run the application and remember to log out and log back in again
to give our code a chance to upload the auth cookie.

go build -o chat

./chat -host=:8080

Open http://localhost:8080/upload and click on Choose File, then select a file
from your hard drive and click on Upload. Navigate to your chat/avatars folder
and you will notice that the file was indeed uploaded and renamed to the value of
your userid field.

Serving the images
Now that we have a place to keep our users' avatar images on the server, we need
a way to make them accessible to the browser. We do this by using the net/http
package's built-in file server. In main.go, add the following code:

http.Handle("/avatars/",
 http.StripPrefix("/avatars/",
 http.FileServer(http.Dir("./avatars"))))

Three Ways to Implement Profile Pictures

[86]

This is actually a single line of code that has been broken up to improve readability.
The http.Handle call should feel familiar: we are specifying that we want to map
the /avatars/ path with the specified handler—this is where things get interesting.
Both http.StripPrefix and http.FileServer return Handler, and they make use
of the decorator pattern we learned about in the previous chapter. The StripPrefix
function takes Handler in, modifies the path by removing the specified prefix, and
passes functionality onto an inner handler. In our case, the inner handler is an http.
FileServer handler that will simply serve static files, provide index listings, and
generate the 404 Not Found error if it cannot find the file. The http.Dir function
allows us to specify which folder we want to expose publicly.

If we didn't strip the /avatars/ prefix from the requests with http.StripPrefix,
the file server would look for another folder called avatars inside the actual avatars
folder, that is, /avatars/avatars/filename instead of /avatars/filename.

Let's build the program and run it before opening http://localhost:8080/
avatars/ in a browser. You'll notice that the file server has generated a listing of
the files inside our avatars folder. Clicking on a file will either download the file,
or in the case of an image, simply display it. If you haven't done so already, go to
http://localhost:8080/upload and upload a picture, then head back to the
listing page and click on it to see it in the browser.

The Avatar implementation for local files
The final piece to making filesystem avatars work is to write an implementation
of our Avatar interface that generates URLs that point to the filesystem endpoint
we created in the last section.

Let's add a test function to our avatar_test.go file:

func TestFileSystemAvatar(t *testing.T) {

 // make a test avatar file
 filename := path.Join("avatars", "abc.jpg")
 ioutil.WriteFile(filename, []byte{}, 0777)
 defer func() { os.Remove(filename) }()

 var fileSystemAvatar FileSystemAvatar
 client := new(client)
 client.userData = map[string]interface{}{"userid": "abc"}
 url, err := fileSystemAvatar.GetAvatarURL(client)
 if err != nil {
 t.Error("FileSystemAvatar.GetAvatarURL should not return an
error")

Chapter 3

[87]

 }
 if url != "/avatars/abc.jpg" {
 t.Errorf("FileSystemAvatar.GetAvatarURL wrongly returned %s",
url)
 }
}

This test is similar to, but slightly more involved than, the GravatarAvatar test
because we are also creating a test file in our avatars folder and deleting it afterwards.

The defer keyword is a great way to ensure the code runs regardless
of what happens in the rest of the function. Even if our test code
panics, the deferred functions will still be called.

The rest of the test is simple: we set a userid field in client.userData and call
GetAvatarURL to ensure we get back the right value. Of course, running this test
will fail, so let's go and add the following code to make it pass in avatar.go:

type FileSystemAvatar struct{}
var UseFileSystemAvatar FileSystemAvatar
func (_ FileSystemAvatar) GetAvatarURL(c *client) (string, error) {
 if userid, ok := c.userData["userid"]; ok {
 if useridStr, ok := userid.(string); ok {
 return "/avatars/" + useridStr + ".jpg", nil
 }
 }
 return "", ErrNoAvatarURL
}

As we see here, to generate the correct URL, we simply get the userid value and
build the final string by adding the appropriate segments together. You may have
noticed that we have hardcoded the file extension to .jpg, which means that the
initial version of our chat application will only support JPEGs.

Supporting only JPEGs might seem like a half-baked solution, but
following Agile methodologies, this is perfectly fine; after all, custom
JPEG profile pictures are better than no custom profile pictures at all.

Let's see our new code in action by updating main.go to use our new Avatar
implementation:

r := newRoom(UseFileSystemAvatar)

Three Ways to Implement Profile Pictures

[88]

Now build and run the application as usual and go to http://localhost:8080/
upload and use a web form to upload a JPEG image to use as your profile picture.
To make sure it's working correctly, choose a unique image that isn't your Gravatar
picture or the image from the authentication service. Once you see the successful
message after clicking on Upload, go to http://localhost:8080/chat and post
a message. You will notice that the application has indeed used the profile picture
that you uploaded.

To change your profile picture, go back to the /upload page and upload a different
picture, then jump back to the /chat page and post more messages.

Supporting different file types
To support different file types, we have to make our GetAvatarURL method for the
FileSystemAvatar type a little smarter.

Instead of just blindly building the string, we will use the very useful ioutil.
ReadDir method to get a listing of the files. The listing also includes directories,
so we will use the IsDir method to determine whether we should skip it or not.

We will then check to see whether each file starts with the userid field (remember
that we named our files in this way) by a call to path.Match. If the filename matches
the userid field, then we have found the file for that user and we return the path. If
anything goes wrong or if we can't find the file, we return the ErrNoAvatarURL error
as usual.

Update the appropriate method in avatar.go with the following code:

func (_ FileSystemAvatar) GetAvatarURL(c *client) (string, error) {
 if userid, ok := c.userData["userid"]; ok {
 if useridStr, ok := userid.(string); ok {
 if files, err := ioutil.ReadDir("avatars"); err == nil {
 for _, file := range files {
 if file.IsDir() {
 continue
 }
 if match, _ := path.Match(useridStr+"*", file.Name());
match {
 return "/avatars/" + file.Name(), nil
 }
 }
 }
 }
 }
 return "", ErrNoAvatarURL
}

Chapter 3

[89]

Delete all the files in the avatar folder to prevent confusion and rebuild the program.
This time upload an image of a different type and notice that our application has no
difficulty handling it.

Refactoring and optimizing our code
When we look back at how our Avatar type is used, you will notice that every
time someone sends a message, the application makes a call to GetAvatarURL. In our
latest implementation, each time the method is called, we iterate over all the files in
the avatars folder. For a particularly chatty user, this could mean that we end up
iterating over and over again many times a minute. This is an obvious waste of
resources and would, at some point very soon, become a scaling problem.

Instead of getting the avatar URL for every message, we will get it only once when the
user first logs in and cache it in the auth cookie. Unfortunately, our Avatar interface
type requires that we pass in a client object to the GetAvatarURL method and we do
not have such an object at the point at which we are authenticating the user.

So did we make a mistake when we designed our Avatar interface?
While this is a natural conclusion to come to, in fact we did the right
thing. We designed the solution with the best information we had
available at the time and therefore had a working chat application
much sooner than if we'd tried to design for every possible future case.
Software evolves and almost always changes during the development
process and will definitely change throughout the lifetime of the code.

Replacing concrete types with interfaces
We have concluded that our GetAvatarURL method depends on a type that is not
available to us at the point we need it, so what would be a good alternative? We
could pass each required field as a separate argument but this would make our
interface brittle, since as soon as an Avatar implementation needs a new piece of
information, we'd have to change the method signature. Instead, we will create a
new type that will encapsulate the information our Avatar implementations need
while conceptually remaining decoupled from our specific case.

In auth.go, add the following code to the top of the page (underneath the package
keyword of course):

import gomniauthcommon "github.com/stretchr/gomniauth/common"
type ChatUser interface {
 UniqueID() string
 AvatarURL() string
}

Three Ways to Implement Profile Pictures

[90]

type chatUser struct {
 gomniauthcommon.User
 uniqueID string
}
func (u chatUser) UniqueID() string {
 return u.uniqueID
}

Here, the import statement imported the common package from Gomniauth
and at the same time gave it a specific name through which it will be accessed:
gomniauthcommon. This isn't entirely necessary since we have no package name
conflicts. However, it makes the code easier to understand.

In the preceding code snippet, we also defined a new interface type called ChatUser,
which exposes the information needed in order for our Avatar implementations
to generate the correct URLs. Then, we defined an actual implementation called
chatUser (notice the lowercase starting letter) that implements the interface. It also
makes use of a very interesting feature in Go: type embedding. We actually embedded
the interface type gomniauth/common.User, which means that our struct implements
the interface automatically.

You may have noticed that we only actually implemented one of the two required
methods to satisfy our ChatUser interface. We got away with this because the
Gomniauth User interface happens to define the same AvatarURL method. In practice,
when we instantiate our chatUser struct—provided we set an appropriate value for
the implied Gomniauth User field—our object implements both Gomniauth's User
interface and our own ChatUser interface at the same time.

Changing interfaces in a test-driven way
Before we can use our new type, we must update the Avatar interface and
appropriate implementations to make use of it. As we will follow TDD practices,
we are going to make these changes in our test file, see compiler errors when we
try to build our code, and see failing tests once we fix those errors before finally
making the tests pass.

Open avatar_test.go and replace TestAuthAvatar with the following code:

func TestAuthAvatar(t *testing.T) {
 var authAvatar AuthAvatar
 testUser := &gomniauthtest.TestUser{}
 testUser.On("AvatarURL").Return("", ErrNoAvatarURL)

Chapter 3

[91]

 testChatUser := &chatUser{User: testUser}
 url, err := authAvatar.GetAvatarURL(testChatUser)
 if err != ErrNoAvatarURL {
 t.Error("AuthAvatar.GetAvatarURL should return ErrNoAvatarURL
when no value present")
 }
 testUrl := "http://url-to-gravatar/"
 testUser = &gomniauthtest.TestUser{}
 testChatUser.User = testUser
 testUser.On("AvatarURL").Return(testUrl, nil)
 url, err = authAvatar.GetAvatarURL(testChatUser)
 if err != nil {
 t.Error("AuthAvatar.GetAvatarURL should return no error when
value present")
 } else {
 if url != testUrl {
 t.Error("AuthAvatar.GetAvatarURL should return correct URL")
 }
 }
}

You will also need to import the gomniauth/test package as
gomniauthtest like we did in the last section.

Using our new interface before we have defined it is a good way to check the sanity
of our thinking, which is another advantage of practicing TDD. In this new test, we
create TestUser provided by Gomniauth and embed it into a chatUser type. We
then pass the new chatUser type into our GetAvatarURL calls and make the same
assertions about output as we always have done.

Gomniauth's TestUser type is interesting as it makes use of the
Testify package's mocking capabilities. See https://github.
com/stretchr/testify for more information.
The On and Return methods allow us to tell TestUser what to
do when specific methods are called. In the first case, we tell the
AvatarURL method to return the error, and in the second case,
we ask it to return the testUrl value, which simulates the two
possible outcomes we are covering in this test.

https://github.com/stretchr/testify
https://github.com/stretchr/testify

Three Ways to Implement Profile Pictures

[92]

Updating the TestGravatarAvatar and TestFileSystemAvatar tests is much
simpler because they rely only on the UniqueID method, the value of which we
can control directly.

Replace the other two tests in avatar_test.go with the following code:

func TestGravatarAvatar(t *testing.T) {
 var gravatarAvitar GravatarAvatar
 user := &chatUser{uniqueID: "abc"}
 url, err := gravatarAvitar.GetAvatarURL(user)
 if err != nil {
 t.Error("GravatarAvitar.GetAvatarURL should not return an
error")
 }
 if url != "//www.gravatar.com/avatar/abc" {
 t.Errorf("GravatarAvitar.GetAvatarURL wrongly returned %s",
url)
 }
}
func TestFileSystemAvatar(t *testing.T) {
 // make a test avatar file
 filename := path.Join("avatars", "abc.jpg")
 ioutil.WriteFile(filename, []byte{}, 0777)
 defer func() { os.Remove(filename) }()
 var fileSystemAvatar FileSystemAvatar
 user := &chatUser{uniqueID: "abc"}
 url, err := fileSystemAvatar.GetAvatarURL(user)
 if err != nil {
 t.Error("FileSystemAvatar.GetAvatarURL should not return an
error")
 }
 if url != "/avatars/abc.jpg" {
 t.Errorf("FileSystemAvatar.GetAvatarURL wrongly returned %s",
url)
 }
}

Of course, this test code won't even compile because we are yet to update our Avatar
interface. In avatar.go, update the GetAvatarURL signature in the Avatar interface
type to take a ChatUser type rather than a client type:

GetAvatarURL(ChatUser) (string, error)

Note that we are using the ChatUser interface (uppercase starting letter)
rather than our internal chatUser implementation struct—after all, we
want to be flexible about the types our GetAvatarURL methods accept.

Chapter 3

[93]

Trying to build this will reveal that we now have broken implementations because
all the GetAvatarURL methods are still asking for a client object.

Fixing existing implementations
Changing an interface like the one we have is a good way to automatically find the
parts of our code that have been affected because they will cause compiler errors.
Of course, if we were writing a package that other people would use, we would
have to be far stricter towards changing the interfaces.

We are now going to update the three implementation signatures to satisfy the new
interface and change the method bodies to make use of the new type. Replace the
implementation for FileSystemAvatar with the following:

func (_ FileSystemAvatar) GetAvatarURL(u ChatUser) (string, error) {
 if files, err := ioutil.ReadDir("avatars"); err == nil {
 for _, file := range files {
 if file.IsDir() {
 continue
 }
 if match, _ := path.Match(u.UniqueID()+"*", file.Name());
match {
 return "/avatars/" + file.Name(), nil
 }
 }
 }
 return "", ErrNoAvatarURL
}

The key change here is that we no longer access the userData field on the client,
and instead just call UniqueID directly on the ChatUser interface.

Next, we update the AuthAvatar implementation with the following code:

func (_ AuthAvatar) GetAvatarURL(u ChatUser) (string, error) {
 url := u.AvatarURL()
 if len(url) > 0 {
 return url, nil
 }
 return "", ErrNoAvatarURL
}

Our new design is proving to be much simpler; it's always a good thing if we can
reduce the amount of code needed. The preceding code makes a call to get the
AvatarURL value, and provided it isn't empty (or len(url) > 0), we return it;
else, we return the ErrNoAvatarURL error instead.

Three Ways to Implement Profile Pictures

[94]

Finally, update the GravatarAvatar implementation:

func (_ GravatarAvatar) GetAvatarURL(u ChatUser) (string, error) {
 return "//www.gravatar.com/avatar/" + u.UniqueID(), nil
}

Global variables versus fields
So far, we have assigned the Avatar implementation to the room type, which enables
us to use different avatars for different rooms. However, this has exposed an issue:
when our users sign in, there is no concept of which room they are headed to so we
cannot know which Avatar implementation to use. Because our application only
supports a single room, we are going to look at another approach toward selecting
implementations: the use of global variables.

A global variable is simply a variable that is defined outside any type definition
and is accessible from every part of the package (and from outside the package
if it's exported). For a simple configuration, such as which type of Avatar
implementation to use, they are an easy and simple solution. Underneath the
import statements in main.go, add the following line:

// set the active Avatar implementation
var avatars Avatar = UseFileSystemAvatar

This defines avatars as a global variable that we can use when we need to get
the avatar URL for a particular user.

Implementing our new design
We need to change the code that calls GetAvatarURL for every message to just
access the value that we put into the userData cache (via the auth cookie).
Change the line where msg.AvatarURL is assigned, as follows:

if avatarUrl, ok := c.userData["avatar_url"]; ok {
 msg.AvatarURL = avatarUrl.(string)
}

Find the code inside loginHandler in auth.go where we call provider.GetUser
and replace it down to where we set the authCookieValue object with the
following code:

user, err := provider.GetUser(creds)
if err != nil {
 log.Fatalln("Error when trying to get user from", provider, "-",
err)
}

Chapter 3

[95]

chatUser := &chatUser{User: user}
m := md5.New()
io.WriteString(m, strings.ToLower(user.Name()))
chatUser.uniqueID = fmt.Sprintf("%x", m.Sum(nil))
avatarURL, err := avatars.GetAvatarURL(chatUser)
if err != nil {
 log.Fatalln("Error when trying to GetAvatarURL", "-", err)
}

Here, we created a new chatUser variable while setting the User field (which
represents the embedded interface) to the User value returned from Gomniauth.
We then saved the userid MD5 hash to the uniqueID field.

The call to avatars.GetAvatarURL is where all of our hard work has paid off,
as we now get the avatar URL for the user far earlier in the process. Update the
authCookieValue line in auth.go to cache the avatar URL in the cookie and
remove the e-mail address since it is no longer needed:

authCookieValue := objx.New(map[string]interface{}{
 "userid": chatUser.uniqueID,
 "name": user.Name(),
 "avatar_url": avatarURL,
}).MustBase64()

However expensive the work that the Avatar implementation needs to do, like
iterating over files on the filesystem, it is mitigated by the fact that the implementation
only does so when the user first logs in, and not every time they send a message.

Tidying up and testing
Finally, we get to snip away some of the fat that has accumulated during our
refactoring process.

Since we no longer store the Avatar implementation in room, let's remove the
field and all references to it from the type. In room.go, delete the avatar Avatar
definition from the room struct and update the newRoom method:

func newRoom() *room {
 return &room{
 forward: make(chan *message),
 join: make(chan *client),
 leave: make(chan *client),
 clients: make(map[*client]bool),
 tracer: trace.Off(),
 }
}

Three Ways to Implement Profile Pictures

[96]

Remember to use the compiler as your to-do list where possible, and
follow the errors to find where you have impacted other code.

In main.go, remove the parameter passed into the newRoom function call since we
are using our global variable instead of this one.

After this exercise, the end user experience remains unchanged. Usually, when
refactoring the code, it is the internals that are modified while the public-facing
interface remains stable and unchanged.

It's usually a good idea to run tools such as golint and go vet
against your code as well to make sure it follows good practices and
doesn't contain any Go faux pas such as missing comments or badly
named functions.

Combining all three implementations
To close this chapter off with a bang, we will implement a mechanism in which
each Avatar implementation takes a turn in trying to get the value. If the first
implementation returns the ErrNoAvatarURL error, we will try the next and so
on until we find a useable value.

In avatar.go, underneath the Avatar type, add the following type definition:

type TryAvatars []Avatar

The TryAvatars type is simply a slice of Avatar objects; therefore, we will add
the following GetAvatarURL method:

func (a TryAvatars) GetAvatarURL(u ChatUser) (string, error) {
 for _, avatar := range a {
 if url, err := avatar.GetAvatarURL(u); err == nil {
 return url, nil
 }
 }
 return "", ErrNoAvatarURL
}

Chapter 3

[97]

This means that TryAvatars is now a valid Avatar implementation and can be used
in place of any specific implementation. In the preceding method, we iterated over
the slice of Avatar objects in an order, calling GetAvatarURL for each one. If no error
is returned, we return the URL; otherwise, we carry on looking. Finally, if we are
unable to find a value, we just return ErrNoAvatarURL as per the interface design.

Update the avatars global variable in main.go to use our new implementation:

var avatars Avatar = TryAvatars{
 UseFileSystemAvatar,
 UseAuthAvatar,
 UseGravatar}

Here we created a new instance of our TryAvatars slice type while putting the other
Avatar implementations inside it. The order matters since it iterates over the objects
in the order in which they appear in the slice. So, first our code will check to see
whether the user has uploaded a picture; if they haven't, the code will check whether
the authentication service has a picture for us to use. If both the approaches fail, a
Gravatar URL will be generated, which in the worst case (for example, if the user
hasn't added a Gravatar picture), will render a default placeholder image.

To see our new functionality in action, perform the following steps:

1.	 Build and rerun the application:
go build –o chat

./chat –host=:8080

2.	 Log out by visiting http://localhost:8080/logout.
3.	 Delete all the pictures from the avatars folder.
4.	 Log back in by navigating to http://localhost:8080/chat.
5.	 Send some messages and take note of your profile picture.
6.	 Visit http://localhost:8080/upload and upload a new profile picture.
7.	 Log out again and log back in as before.
8.	 Send some more messages and notice that your profile picture has updated.

Three Ways to Implement Profile Pictures

[98]

Summary
In this chapter, we added three different implementations of profile pictures to our
chat application. First we asked the authentication service to provide a URL for us to
use. We did this by using Gomniauth's abstraction of the user resource data, which we
then included as part of the user interface every time a user would send a message.
Using Go's zero (or default) initialization pattern, we were able to refer to different
implementations of our Avatar interface without actually creating any instances.

We stored data in a cookie for when the user would log in. Therefore, and also given
the fact that cookies persist between builds of our code, we added a handy logout
feature to help us validate our changes, which we also exposed to our users so that
they could log out too. Other small changes to the code and the inclusion of Bootstrap
on our chat page dramatically improved the look and feel of our application.

We used MD5 hashing in Go to implement the Gravatar.com API by hashing the
e-mail address that the authentication service provided. If the e-mail address is not
known to Gravatar, they will deliver a nice default placeholder image for us, which
means our user interface will never be broken due to missing images.

We then built and completed an upload form and associated the server functionality
that saved uploaded pictures in the avatars folder. We saw how to expose the saved
uploaded pictures to users via the standard library's http.FileServer handler. As
this introduced inefficiencies in our design by causing too much filesystem access, we
refactored our solution with the help of our unit tests. By moving the GetAvatarURL
call to the point at which users log in, rather than every time a message is sent, we
made our code significantly more scalable.

Our special ErrNoAvatarURL error type was used as part of our interface design to
allow us to inform the calling code when it was not possible to obtain an appropriate
URL—this became particularly useful when we created our Avatars slice type. By
implementing the Avatar interface on a slice of Avatar types, we were able to make
a new implementation that took turns trying to get a valid URL from each of the
different options available, starting with the filesystem, then the authentication service,
and finally Gravatar. We achieved this with zero impact on how the user would
interact with the interface. If an implementation returned ErrNoAvatarURL, we
tried the next one.

Our chat application is ready to go live so we can invite our friends and have a real
conversation. But first we need to choose a domain name to host it at, something
we will look at in the next chapter.

Gravatar.com

Command-line Tools to Find
Domain Names

The chat application we built in the previous chapters is ready to take the world by
storm, but not before we give it a home on the Internet. Before we invite our friends
to join the conversation, we need to pick a valid, catchy, and available domain name
that we can point to the server running our Go code. Instead of sitting in front of our
favorite domain name provider for hours on end trying different names, we are going
to develop a few command-line tools that will help us find the right one. As we do so,
we will see how the Go standard library allows us to interface with the terminal and
other executing applications, as well as explore some patterns and practices to build
command-line programs.

In this chapter, you will learn:

•	 How to build complete command-line applications with as little as
a single code file

•	 How to ensure that the tools we build can be composed with other
tools using standard streams

•	 How to interact with a simple third-party JSON RESTful API
•	 How to utilize the standard in and out pipes in Go code
•	 How to read from a streaming source one line at a time
•	 How to build a WHOIS client to look up domain information
•	 How to store and use sensitive or deployment-specific information

in environment variables

Command-line Tools to Find Domain Names

[100]

Pipe design for command-line tools
We are going to build a series of command-line tools that use the standard streams
(stdin and stdout) to communicate with the user and with other tools. Each tool
will take input line by line via the standard in pipe, process it in some way, and then
print the output line by line to the standard out pipe for the next tool or for the user.

By default, the standard input is connected to the user's keyboard, and the standard
output is printed to the terminal from which the command was run; however, both can
be redirected using redirection metacharacters. It's possible to throw the output away
by redirecting it to NUL on Windows or /dev/null on Unix machines, or redirecting
it to a file, which will cause the output to be saved to the disk. Alternatively, you can
pipe (using the | pipe character) the output of one program into the input of another;
it is this feature that we will make use of in order to connect our various tools together.
For example, you could pipe the output from one program to the input of another
program in a terminal by using this code:

one | two

Our tools will work with lines of strings where each line (separated by a linefeed
character) represents one string. When run without any pipe redirection, we will be
able to interact directly with the programs using the default in and out, which will
be useful when testing and debugging our code.

Five simple programs
In this chapter, we will build five small programs that we will combine together at
the end. The key features of the programs are as follows:

•	 Sprinkle: This program will add some web-friendly sprinkle words to
increase the chances of finding available domain names

•	 Domainify: This program will ensure words are acceptable for a domain
name by removing unacceptable characters and replacing spaces with
hyphens and adding an appropriate top-level domain (such as .com and
.net) to the end

•	 Coolify: This program will make a boring old normal word into Web 2.0
by fiddling around with vowels

•	 Synonyms: This program will use a third-party API to find synonyms
•	 Available: This program will check to see whether the domain is available

or not using an appropriate WHOIS server

Five programs might seem like a lot for one chapter, but don't forget how small
entire programs can be in Go.

Chapter 4

[101]

Sprinkle
Our first program augments incoming words with some sugar terms in order to
improve the odds of finding available names. Many companies use this approach
to keep the core messaging consistent while being able to afford the .com domain.
For example, if we pass in the word chat, it might pass out chatapp; alternatively,
if we pass in talk, we may get back talk time.

Go's math/rand package allows us to break away from the predictability of
computers to give a chance or opportunity to get involved in our program's
process and make our solution feel a little more intelligent than it actually is.

To make our Sprinkle program work, we will:

•	 Define an array of transformations using a special constant to indicate
where the original word will appear

•	 Use the bufio package to scan input from stdin and fmt.Println to write
output to stdout

•	 Use the math/rand package to randomly select which transformation to
apply to the word, such as appending "app" or prefixing the term with "get"

All of our programs will reside in the $GOPATH/src directory. For
example, if your GOPATH is ~/Work/projects/go, you would create
your program folders in the ~/Work/projects/go/src folder.

In the $GOPATH/src directory, create a new folder called sprinkle and add a main.
go file containing the following code:

package main
import (
 "bufio"
 "fmt"
 "math/rand"
 "os"
 "strings"
 "time"
)
const otherWord = "*"
var transforms = []string{
 otherWord,
 otherWord,
 otherWord,
 otherWord,
 otherWord + "app",
 otherWord + "site",

Command-line Tools to Find Domain Names

[102]

 otherWord + "time",
 "get" + otherWord,
 "go" + otherWord,
 "lets " + otherWord,
}
func main() {
 rand.Seed(time.Now().UTC().UnixNano())
 s := bufio.NewScanner(os.Stdin)
 for s.Scan() {
 t := transforms[rand.Intn(len(transforms))]
 fmt.Println(strings.Replace(t, otherWord, s.Text(), -1))
 }
}

From now on, it is assumed that you will sort out the appropriate import statements
yourself. If you need assistance, refer to the tips provided in Appendix, Good Practices
for a Stable Go Environment.

The preceding code represents our complete Sprinkle program. It defines three
things: a constant, a variable, and the obligatory main function, which serves as
the entry point to Sprinkle. The otherWord constant string is a helpful token that
allows us to specify where the original word should occur in each of our possible
transformations. It lets us write code such as otherWord+"extra", which makes it
clear that, in this particular case, we want to add the word extra to the end of the
original word.

The possible transformations are stored in the transforms variable that we
declare as a slice of strings. In the preceding code, we defined a few different
transformations such as adding app to the end of a word or lets before it. Feel
free to add some more in there; the more creative, the better.

In the main function, the first thing we do is use the current time as a random seed.
Computers can't actually generate random numbers, but changing the seed number
for the random algorithms gives the illusion that it can. We use the current time in
nanoseconds because it's different each time the program is run (provided the
system clock isn't being reset before each run).

We then create a bufio.Scanner object (called bufio.NewScanner) and tell it to
read input from os.Stdin, which represents the standard in stream. This will be
a common pattern in our five programs since we are always going to read from
standard in and write to standard out.

Chapter 4

[103]

The bufio.Scanner object actually takes io.Reader as its input
source, so there is a wide range of types that we could use here. If
you were writing unit tests for this code, you could specify your own
io.Reader for the scanner to read from, removing the need for you
to worry about simulating the standard input stream.

As the default case, the scanner allows us to read, one at a time, blocks of bytes
separated by defined delimiters such as a carriage return and linefeed characters.
We can specify our own split function for the scanner or use one of the options
built in the standard library. For example, there is bufio.ScanWords that scans
individual words by breaking on whitespace rather than linefeeds. Since our
design specifies that each line must contain a word (or a short phrase), the default
line-by-line setting is ideal.

A call to the Scan method tells the scanner to read the next block of bytes (the next
line) from the input, and returns a bool value indicating whether it found anything
or not. This is how we are able to use it as the condition for the for loop. While there
is content to work on, Scan returns true and the body of the for loop is executed,
and when Scan reaches the end of the input, it returns false, and the loop is broken.
The bytes that have been selected are stored in the Bytes method of the scanner, and
the handy Text method that we use converts the []byte slice into a string for us.

Inside the for loop (so for each line of input), we use rand.Intn to select a random
item from the transforms slice, and use strings.Replace to insert the original
word where the otherWord string appears. Finally, we use fmt.Println to print
the output to the default standard output stream.

Let's build our program and play with it:

go build –o sprinkle
./sprinkle

Once the program is running, since we haven't piped any content in, or specified a
source for it to read from, we will use the default behavior where it reads the user
input from the terminal. Type in chat and hit return. The scanner in our code notices
the linefeed character at the end of the word and runs the code that transforms it,
outputting the result. For example, if you type chat a few times, you might see
output like:

chat
go chat
chat
lets chat
chat
chat app

Command-line Tools to Find Domain Names

[104]

Sprinkle never exits (meaning the Scan method never returns false to break the loop)
because the terminal is still running; in normal execution, the in pipe will be closed by
whatever program is generating the input. To stop the program, hit Ctrl + C.

Before we move on, let's try running Sprinkle specifying a different input source,
we are going to use the echo command to generate some content, and pipe it into
our Sprinkle program using the pipe character:

echo "chat" | ./sprinkle

The program will randomly transform the word, print it out, and exit since the echo
command generates only one line of input before terminating and closing the pipe.

We have successfully completed our first program, which has a very simple but
useful function, as we will see.

Exercise – configurable transformations
As an extra assignment, rather than hardcoding the transformations array as we
have done, see if you can externalize it into a text file or database.

Domainify
Some of the words that output from Sprinkle contain spaces and perhaps other
characters that are not allowed in domains, so we are going to write a program, called
Domainify, that converts a line of text into an acceptable domain segment and add
an appropriate Top-level Domain (TLD) to the end. Alongside the sprinkle folder,
create a new one called domainify, and add a main.go file with the following code:

package main
var tlds = []string{"com", "net"}
const allowedChars = "abcdefghijklmnopqrstuvwxyz0123456789_-"
func main() {
 rand.Seed(time.Now().UTC().UnixNano())
 s := bufio.NewScanner(os.Stdin)
 for s.Scan() {
 text := strings.ToLower(s.Text())
 var newText []rune
 for _, r := range text {
 if unicode.IsSpace(r) {
 r = '-'
 }
 if !strings.ContainsRune(allowedChars, r) {
 continue
 }

Chapter 4

[105]

 newText = append(newText, r)
 }
 fmt.Println(string(newText) + "." +
 tlds[rand.Intn(len(tlds))])
 }
}

You will notice a few similarities between the Domainify and Sprinkle programs:
we set the random seed using rand.Seed, generate a NewScanner method
wrapping the os.Stdin reader, and scan each line until there is no more input.

We then convert the text to lowercase and build up a new slice of rune types called
newText. The rune types consist only of characters that appear in the allowedChars
string, which strings.ContainsRune lets us know. If rune is a space that we
determine by calling unicode.IsSpace, we replace it with a hyphen, which is an
acceptable practice in domain names.

Ranging over a string returns the index of each character and a rune
type, which is a numerical value (specifically int32) representing
the character itself. For more information about runes, characters,
and strings, refer to http://blog.golang.org/strings.

Finally, we convert newText from a []rune slice to a string and add either .com
or .net to the end before printing it out using fmt.Println.

Build and run Domainify:

go build –o domainify

./domainify

Type in some of these options to see how domainify reacts:

•	 Monkey

•	 Hello Domainify

•	 "What's up?"

•	 One (two) three!

You can see that, for example, One (two) three! might yield one-two-three.com.

We are now going to compose Sprinkle and Domainify to see them work together.
In your terminal, navigate to the parent folder (probably $GOPATH/src) of sprinkle
and domainify, and run the following command:

./sprinkle/sprinkle | ./domainify/domainify

http://blog.golang.org/strings

Command-line Tools to Find Domain Names

[106]

Here we ran the Sprinkle program and piped the output into the Domainify
program. By default, sprinkle uses the terminal as the input and domanify outputs
to the terminal. Try typing in chat a few times again, and notice the output is similar
to what Sprinkle was outputting previously, except now the words are acceptable
for domain names. It is this piping between programs that allows us to compose
command-line tools together.

Exercise – making top-level domains configurable
Only supporting .com and .net top-level domains is fairly limiting. As an additional
assignment, see if you can accept a list of TLDs via a command-line flag.

Coolify
Often domain names for common words such as chat are already taken and a
common solution is to play around with the vowels in the words. For example,
we might remove the a leaving cht (which is actually less likely to be available),
or add an a to produce chaat. While this clearly has no actual effect on coolness, it
has become a popular, albeit slightly dated, way to secure domain names that still
sound like the original word.

Our third program, Coolify, will allow us to play with the vowels of words that
come in via the input, and write the modified versions to the output.

Create a new folder called coolify alongside sprinkle and domainify, and create
the main.go code file with the following code:

package main
const (
 duplicateVowel bool = true
 removeVowel bool = false
)
func randBool() bool {
 return rand.Intn(2) == 0
}
func main() {
 rand.Seed(time.Now().UTC().UnixNano())
 s := bufio.NewScanner(os.Stdin)
 for s.Scan() {
 word := []byte(s.Text())
 if randBool() {
 var vI int = -1

Chapter 4

[107]

 for i, char := range word {
 switch char {
 case 'a', 'e', 'i', 'o', 'u', 'A', 'E', 'I', 'O', 'U':
 if randBool() {
 vI = i
 }
 }
 }
 if vI >= 0 {
 switch randBool() {
 case duplicateVowel:
 word = append(word[:vI+1], word[vI:]...)
 case removeVowel:
 word = append(word[:vI], word[vI+1:]...)
 }
 }
 }
 fmt.Println(string(word))
 }
}

While the preceding Coolify code looks very similar to the codes of Sprinkle and
Domainify, it is slightly more complicated. At the very top of the code we declare
two constants, duplicateVowel and removeVowel, that help make Coolify code
more readable. The switch statement decides whether we duplicate or remove a
vowel. Also, using these constants, we are able to express our intent very clearly,
rather than using just true or false.

We then define the randBool helper function that just randomly returns true
or false by asking the rand package to generate a random number, and checking
whether if that number comes out as zero. It will be either 0 or 1, so there's a 50/50
chance of it being true.

The main function for Coolify starts the same way as the main functions for Sprinkle
and Domainify—by setting the rand.Seed method and creating a scanner of the
standard input stream before executing the loop body for each line of input. We
call randBool first to decide whether we are even going to mutate a word or not,
so Coolify will only affect half of the words passed through it.

We then iterate over each rune in the string and look for a vowel. If our randBool
method returns true, we keep the index of the vowel character in the vI variable.
If not, we keep looking through the string for another vowel, which allows us to
randomly select a vowel from the words rather than always modifying the same one.

Command-line Tools to Find Domain Names

[108]

Once we have selected a vowel, we then use randBool again to randomly decide
what action to take.

This is where the helpful constants come in; consider the following
alternative switch statement:

switch randBool() {

case true:

 word = append(word[:vI+1], word[vI:]...)

case false:

 word = append(word[:vI], word[vI+1:]...)

}

In the preceding code snippet, it's difficult to tell what is going on
because true and false don't express any context. On the other
hand, using duplicateVowel and removeVowel tells anyone
reading the code what we mean by the result of randBool.

The three dots following the slices cause each item to pass as a separate argument
to the append function. This is an idiomatic way of appending one slice to another.
Inside the switch case, we do some slice manipulation to either duplicate the vowel
or remove it altogether. We are reslicing our []byte slice and using the append
function to build a new one made up of sections of the original word. The following
diagram shows which sections of the string we access in our code:

Chapter 4

[109]

If we take the value blueprints as an example word, and assume that our code
selected the first e character as the vowel (so that vI is 3), we can see what each
new slice of word represents in this table:

Code Value Description
word[:vI+1] blue Describes a slice from the beginning of the word slice to

the selected vowel. The +1 is required because the value
following the colon does not include the specified index;
rather it slices up to that value.

word[vI:] eprints Describes a slice starting at and including the selected
vowel to the end of the slice.

word[:vI] blu Describes a slice from the beginning of the word slice up
to, but not including, the selected vowel.

word[vI+1:] prints Describes a slice from the item following the selected
vowel to the end of the slice.

After we modify the word, we print it out using fmt.Println.

Let's build Coolify and play with it to see what it can do:

go build –o coolify

./coolify

When Coolify is running, try typing blueprints to see what sort of modifications it
comes up with:

blueprnts

bleprints

bluepriints

blueprnts

blueprints

bluprints

Let's see how Coolify plays with Sprinkle and Domainify by adding their names to
our pipe chain. In the terminal, navigate back (using the cd command) to the parent
folder and run the following commands:

./coolify/coolify | ./sprinkle/sprinkle | ./domainify/domainify

Command-line Tools to Find Domain Names

[110]

We will first spice up a word with extra pieces and make it cooler by tweaking
the vowels before finally transforming it into a valid domain name. Play around
by typing in a few words and seeing what suggestions our code makes.

Synonyms
So far, our programs have only modified words, but to really bring our solution to life,
we need to be able to integrate a third-party API that provides word synonyms. This
allows us to suggest different domain names while retaining the original meaning.
Unlike Sprinkle and Domainify, Synonyms will write out more than one response
for each word given to it. Our architecture of piping programs together means this
is no problem; in fact we do not even have to worry about it since each of the three
programs is capable of reading multiple lines from the input source.

The Big Hugh Thesaurus at bighughlabs.com has a very clean and simple API that
allows us to make a single HTTP GET request in order to look up synonyms.

If in the future the API we are using changes or disappears (after
all, this is the Internet!), you will find some options at https://
github.com/matryer/goblueprints.

Before you can use the Big Hugh Thesaurus, you'll need an API key, which you
can get by signing up to the service at http://words.bighugelabs.com/.

Using environment variables for configuration
Your API key is a sensitive piece of configuration information that you won't want
to share with others. We could store it as const in our code, but that would not only
mean we couldn't share our code without sharing our key (not good, especially if
you love open source projects), but also, and perhaps more importantly, you would
have to recompile your project if the key expires or if you want to use a different one.

A better solution is using an environment variable to store the key, as this will allow
you to easily change it if you need to. You could also have different keys for different
deployments; perhaps you have one key for development or testing and another for
production. This way, you can set a specific key for a particular execution of code,
so you can easily switch keys without having to change your system-level settings.
Either way, different operating systems deal with environment variables in similar
ways, so they are a perfect choice if you are writing cross-platform code.

bighughlabs.com
https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints
http://words.bighugelabs.com/

Chapter 4

[111]

Create a new environment variable called BHT_APIKEY and set your API key as
its value.

For machines running a bash shell, you can modify your ~/.bashrc
file or similar to include export commands such as:
export BHT_APIKEY=abc123def456ghi789jkl

On Windows machines, you can navigate to the properties of your
computer and look for Environment Variables in the Advanced section.

Consuming a web API
Making a request for http://words.bighugelabs.com/apisample.
php?v=2&format=json in a web browser shows us what the structure of JSON
response data looks like when finding synonyms for the word love:

{
 "noun":{
 "syn":[
 "passion",
 "beloved",
 "dear"
]
 },
 "verb":{
 "syn":[
 "love",
 "roll in the hay",
 "make out"
],
 "ant":[
 "hate"
]
 }
}

The real API returns a lot more actual words than what is printed here, but the
structure is the important thing. It represents an object where the keys describe the
types of words (verbs, nouns, and so on) and values are objects that contain arrays
of strings keyed on syn or ant (for synonym and antonym respectively); it is the
synonyms we are interested in.

http://words.bighugelabs.com/apisample.php?v=2&format=json
http://words.bighugelabs.com/apisample.php?v=2&format=json

Command-line Tools to Find Domain Names

[112]

To turn this JSON string data into something we can use in our code, we must
decode it into structures of our own using capabilities found in the encoding/
json package. Because we're writing something that could be useful outside the
scope of our project, we will consume the API in a reusable package rather than
directly in our program code. Create a new folder called thesaurus alongside your
other program folders (in $GOPATH/src) and insert the following code into a new
bighugh.go file:

package thesaurus
import (
 "encoding/json"
 "errors"
 "net/http"
)
type BigHugh struct {
 APIKey string
}
type synonyms struct {
 Noun *words `json:"noun"`
 Verb *words `json:"verb"`
}
type words struct {
 Syn []string `json:"syn"`
}
func (b *BigHugh) Synonyms(term string) ([]string, error) {
 var syns []string
 response, err := http.Get("http://words.bighugelabs.com/api/2/"
+ b.APIKey + "/" + term + "/json")
 if err != nil {
 return syns, errors.New("bighugh: Failed when looking for
synonyms for \"" + term + "\"" + err.Error())
 }
 var data synonyms
 defer response.Body.Close()
 if err := json.NewDecoder(response.Body).Decode(&data); err !=
nil {
 return syns, err
 }
 syns = append(syns, data.Noun.Syn...)
 syns = append(syns, data.Verb.Syn...)
 return syns, nil
}

Chapter 4

[113]

In the preceding code, the BigHugh type we define houses the necessary API key
and provides the Synonyms method that will be responsible for doing the work of
accessing the endpoint, parsing the response, and returning the results. The most
interesting parts of this code are the synonyms and words structures. They describe
the JSON response format in Go terms, namely an object containing noun and verb
objects, which in turn contain a slice of strings in a variable called Syn. The tags
(strings in backticks following each field definition) tell the encoding/json package
which fields to map to which variables; this is required since we have given them
different names.

Typically, JSON keys have lowercase names, but we have to use
capitalized names in our structures so that the encoding/json
package knows that the fields exist. If we didn't, the package
would simply ignore the fields. However, the types themselves
(synonyms and words) do not need to be exported.

The Synonyms method takes a term argument and uses http.Get to make a web
request to the API endpoint in which the URL contains not only the API key value,
but also the term value itself. If the web request fails for some reason, we will make
a call to log.Fatalln, which writes the error out to the standard error stream
and exits the program with a non-zero exit code (actually an exit code of 1)—this
indicates that an error has occurred.

If the web request is successful, we pass the response body (another io.Reader) to
the json.NewDecoder method and ask it to decode the bytes into the data variable
that is of our synonyms type. We defer the closing of the response body in order to
keep memory clean before using Go's built-in append function to concatenate both
noun and verb synonyms to the syns slice that we then return.

Although we have implemented the BigHugh thesaurus, it isn't the only option
out there, and we can express this by adding a Thesaurus interface to our package.
In the thesaurus folder, create a new file called thesaurus.go, and add the
following interface definition to the file:

package thesaurus
type Thesaurus interface {
 Synonyms(term string) ([]string, error)
}

This simple interface just describes a method that takes a term string and returns
either a slice of strings containing the synonyms, or an error (if something goes
wrong). Our BigHugh structure already implements this interface, but now other
users could add interchangeable implementations for other services, such as
Dictionary.com or the Merriam-Webster Online service.

Dictionary.com

Command-line Tools to Find Domain Names

[114]

Next we are going to use this new package in a program. Change directory in terminal
by backing up a level to $GOPATH/src, create a new folder called synonyms, and insert
the following code into a new main.go file you will place in that folder:

func main() {
 apiKey := os.Getenv("BHT_APIKEY")
 thesaurus := &thesaurus.BigHugh{APIKey: apiKey}
 s := bufio.NewScanner(os.Stdin)
 for s.Scan() {
 word := s.Text()
 syns, err := thesaurus.Synonyms(word)
 if err != nil {
 log.Fatalln("Failed when looking for synonyms for
\""+word+"\"", err)
 }
 if len(syns) == 0 {
 log.Fatalln("Couldn't find any synonyms for \"" + word +
"\"")
 }
 for _, syn := range syns {
 fmt.Println(syn)
 }
 }
}

When you manage your imports again, you will have written a complete
program capable of looking up synonyms for words by integrating the Big
Huge Thesaurus API.

In the preceding code, the first thing our main function does is get the BHT_APIKEY
environment variable value via the os.Getenv call. To bullet proof your code, you
might consider double-checking to ensure this value is properly set, and report an
error if it is not. For now, we will assume that everything is configured properly.

Next, the preceding code starts to look a little familiar since it scans each line of
input again from os.Stdin and calls the Synonyms method to get a list of
replacement words.

Let's build a program and see what kind of synonyms the API comes back with
when we input the word chat:

go build –o synonyms

./synonyms

chat

confab

Chapter 4

[115]

confabulation

schmooze

New World chat

Old World chat

conversation

thrush

wood warbler

chew the fat

shoot the breeze

chitchat

chatter

The results you get will most likely differ from what we have listed here since we're
hitting a live API, but the important aspect here is that when we give a word or term
as input to the program, it returns a list of synonyms as output, one per line.

Try chaining your programs together in various orders to see what
result you get. Regardless, we will do this together later in the chapter.

Getting domain suggestions
By composing the four programs we have built so far in this chapter, we already
have a useful tool for suggesting domain names. All we have to do now is run
the programs while piping the output into input in the appropriate way. In a
terminal, navigate to the parent folder and run the following single line:

./synonyms/synonyms | ./sprinkle/sprinkle | ./coolify/coolify |

./domainify/domainify

Because the synonyms program is first in our list, it will receive the input from the
terminal (whatever the user decides to type in). Similarly, because domainify is last
in the chain, it will print its output to the terminal for the user to see. At each step,
the lines of words will be piped through the other programs, giving them each a
chance to do their magic.

Type in some words to see some domain suggestions, for example, if you type chat
and hit return, you might see:

getcnfab.com

confabulationtim.com

getschmoozee.net

Command-line Tools to Find Domain Names

[116]

schmosee.com

neew-world-chatsite.net

oold-world-chatsite.com

conversatin.net

new-world-warblersit.com

gothrush.net

lets-wood-wrbler.com

chw-the-fat.com

The number of suggestions you get will actually depend on the number of synonyms,
since it is the only program that generates more lines of output than we give it.

We still haven't solved our biggest problem—the fact that we have no idea whether
the suggested domain names are actually available or not, so we still have to sit and
type each of them into a website. In the next section, we will address this issue.

Available
Our final program, Available, will connect to a WHOIS server to ask for details about
domains passed into it—of course, if no details are returned, we can safely assume
that the domain is available for purchase. Unfortunately, the WHOIS specification (see
http://tools.ietf.org/html/rfc3912) is very small and contains no information
about how a WHOIS server should reply when you ask it for details about a domain.
This means programmatically parsing the response becomes a messy endeavor. To
address this issue for now, we will integrate with only a single WHOIS server that
we can be sure will have No match somewhere in the response when it has no records
for the domain.

A more robust solution might be to have a WHOIS interface
with well-defined structures for the details, and perhaps an
error message for the cases when the domain doesn't exist—with
different implementations for different WHOIS servers. As you
can imagine, it's quite a project; perfect for an open source effort.

Create a new folder called available alongside the others in $GOPATH/src and
add a main.go file in it containing the following function code:

func exists(domain string) (bool, error) {
 const whoisServer string = "com.whois-servers.net"
 conn, err := net.Dial("tcp", whoisServer+":43")
 if err != nil {
 return false, err

http://tools.ietf.org/html/rfc3912

Chapter 4

[117]

 }
 defer conn.Close()
 conn.Write([]byte(domain + "\r\n"))
 scanner := bufio.NewScanner(conn)
 for scanner.Scan() {
 if strings.Contains(strings.ToLower(scanner.Text()), "no
match") {
 return false, nil
 }
 }
 return true, nil
}

The exists function implements what little there is in the WHOIS specification by
opening a connection to port 43 on the specified whoisServer instance with a call to
net.Dial. We then defer the closing of the connection, which means that however
the function exits (successfully or with an error, or even a panic), Close() will still
be called on the connection conn. Once the connection is open, we simply write the
domain followed by \r\n (the carriage return and line feed characters). This is all
the specification tells us, so we are on our own from now on.

Essentially, we are looking for some mention of no match in the response, and that
is how we will decide whether a domain exists or not (exists in this case is actually
just asking the WHOIS server if it has a record for the domain we specified). We use
our favorite bufio.Scanner method to help us iterate over the lines in the response.
Passing the connection into NewScanner works because net.Conn is actually an
io.Reader too. We use strings.ToLower so we don't have to worry about case
sensitivity, and strings.Contains to see if any of the lines contains the no match text.
If it does, we return false (since the domain doesn't exist), otherwise we return true.

The com.whois-servers.net WHOIS service supports domain names for .com
and .net, which is why the Domainify program only adds these types of domains.
If you used a server that had WHOIS information for a wider selection of domains,
you could add support for additional TLDs.

Let's add a main function that uses our exists function to check to see whether the
incoming domains are available or not. The check mark and cross mark symbols in
the following code are optional—if your terminal doesn't support them you are free
to substitute them with simple Yes and No strings.

Add the following code to main.go:

var marks = map[bool]string{true: "ü", false: "û"}
func main() {
 s := bufio.NewScanner(os.Stdin)

Command-line Tools to Find Domain Names

[118]

 for s.Scan() {
 domain := s.Text()
 fmt.Print(domain, " ")
 exist, err := exists(domain)
 if err != nil {
 log.Fatalln(err)
 }
 fmt.Println(marks[!exist])
 time.Sleep(1 * time.Second)
 }
}

In the preceding code for the main function, we simply iterate over each line coming
in via os.Stdin, printing out the domain with fmt.Print (but not fmt.Println,
as we do not want the linefeed yet), calling our exists function to see whether the
domain exists or not, and printing out the result with fmt.Println (because we do
want a linefeed at the end).

Finally, we use time.Sleep to tell the process to do nothing for 1 second in order
to make sure we take it easy on the WHOIS server.

Most WHOIS servers will be limited in various ways in order to prevent
you from taking up too much resources. So slowing things down is a
sensible way to make sure we don't make the remote servers angry.
Consider what this also means for unit tests. If a unit test was actually
making real requests to a remote WHOIS server, every time your tests
run, you will be clocking up stats against your IP address. A much
better approach would be to stub the WHOIS server to simulate real
responses.

The marks map at the top of the preceding code is a nice way to map the Boolean
response from exists to human-readable text, allowing us to just print the response
in a single line using fmt.Println(marks[!exist]). We are saying not exist because
our program is checking whether the domain is available or not (logically the opposite
of whether it exists in the WHOIS server or not).

We can use the check and cross characters in our code happily because
all Go code files are UTF-8 compliant—the best way to actually get
these characters is to search the Web for them, and use copy and paste
to bring them into code; else there are platform-dependent ways to get
such special characters.

Chapter 4

[119]

After fixing the import statements for the main.go file, we can try out Available to
see whether domain names are available or not:

go build –o available

./available

Once Available is running, type in some domain names:

packtpub.com

packtpub.com û

google.com

google.com û

madeupdomain1897238746234.net

madeupdomain1897238746234.net ü

As you can see, for domains that are obviously not available, we get our little cross
mark, but when we make up a domain name using random numbers, we see that it
is indeed available.

Composing all five programs
Now that we have completed all five of our programs, it's time to put them all
together so that we can use our tool to find an available domain name for our chat
application. The simplest way to do this is to use the technique we have been using
throughout this chapter: using pipes in a terminal to connect the output and input.

In the terminal, navigate to the parent folder of the five programs and run the
following single line of code:

./synonyms/synonyms | ./sprinkle/sprinkle | ./coolify/coolify |

./domainify/domainify | ./available/available

Once the programs are running, type in a starting word and see how it generates
suggestions before checking their availability.

For example, typing in chat might cause the programs to take the following actions:

1.	 The word chat goes into synonyms and out comes a series of synonyms:
°° confab

°° confabulation

°° schmooze

Command-line Tools to Find Domain Names

[120]

2.	 The synonyms flow into sprinkle where they are augmented with
web-friendly prefixes and suffixes such as:

°° confabapp

°° goconfabulation

°° schmooze time

3.	 These new words flow into coolify, where the vowels are potentially
tweaked:

°° confabaapp

°° goconfabulatioon

°° schmoooze time

4.	 The modified words then flow into domainify where they are turned into
valid domain names:

°° confabaapp.com

°° goconfabulatioon.net

°° schmooze-time.com

5.	 Finally, the domain names flow into available where they are checked
against the WHOIS server to see whether somebody has already taken
the domain or not:

°° confabaapp.com û

°° goconfabulatioon.net ü

°° schmooze-time.com ü

One program to rule them all
Running our solution by piping programs together is an elegant architecture, but
it doesn't have a very elegant interface. Specifically, whenever we want to run our
solution, we have to type the long messy line where each program is listed separated
by pipe characters. In this section, we are going to write a Go program that uses the
os/exec package to run each subprogram while piping the output from one into the
input of the next as per our design.

Create a new folder called domainfinder alongside the other five programs, and
create another new folder called lib inside that folder. The lib folder is where we
will keep builds of our subprograms, but we don't want to be copying and pasting
them every time we make a change. Instead, we will write a script that builds the
subprograms and copies the binaries to the lib folder for us.

Chapter 4

[121]

Create a new file called build.sh on Unix machines or build.bat for Windows
and insert the following code:

#!/bin/bash
echo Building domainfinder...
go build -o domainfinder
echo Building synonyms...
cd ../synonyms
go build -o ../domainfinder/lib/synonyms
echo Building available...
cd ../available
go build -o ../domainfinder/lib/available
cd ../build
echo Building sprinkle...
cd ../sprinkle
go build -o ../domainfinder/lib/sprinkle
cd ../build
echo Building coolify...
cd ../coolify
go build -o ../domainfinder/lib/coolify
cd ../build
echo Building domainify...
cd ../domainify
go build -o ../domainfinder/lib/domainify
cd ../build
echo Done.

The preceding script simply builds all of our subprograms (including domainfinder,
which we are yet to write) telling go build to place them in our lib folder. Be sure
to give the new script execution rights by doing chmod +x build.sh, or something
similar. Run this script from a terminal and look inside the lib folder to ensure that
it has indeed placed the binaries for our subprograms in there.

Don't worry about the no buildable Go source files error for
now, it's just Go telling us that the domainfinder program doesn't
have any .go files to build.

Create a new file called main.go inside domainfinder and insert the following
code in the file:

package main
var cmdChain = []*exec.Cmd{
 exec.Command("lib/synonyms"),
 exec.Command("lib/sprinkle"),

Command-line Tools to Find Domain Names

[122]

 exec.Command("lib/coolify"),
 exec.Command("lib/domainify"),
 exec.Command("lib/available"),
}
func main() {

 cmdChain[0].Stdin = os.Stdin
 cmdChain[len(cmdChain)-1].Stdout = os.Stdout

 for i := 0; i < len(cmdChain)-1; i++ {
 thisCmd := cmdChain[i]
 nextCmd := cmdChain[i+1]
 stdout, err := thisCmd.StdoutPipe()
 if err != nil {
 log.Fatalln(err)
 }
 nextCmd.Stdin = stdout
 }

 for _, cmd := range cmdChain {
 if err := cmd.Start(); err != nil {
 log.Fatalln(err)
 } else {
 defer cmd.Process.Kill()
 }
 }

 for _, cmd := range cmdChain {
 if err := cmd.Wait(); err != nil {
 log.Fatalln(err)
 }
 }

}

The os/exec package gives us everything we need to work with running external
programs or commands from within Go programs. First, our cmdChain slice contains
*exec.Cmd commands in the order in which we want to join them together.

At the top of the main function, we tie the Stdin (standard in stream) of the first
program to the os.Stdin stream for this program, and the Stdout (standard out
stream) of the last program to the os.Stdout stream for this program. This means
that, like before, we will be taking input through the standard input stream and
writing output to the standard output stream.

Chapter 4

[123]

Our next block of code is where we join the subprograms together by iterating
over each item and setting its Stdin to the Stdout of the program before it.

The following table shows each program, with a description of where it gets its
input from, and where its output goes:

Program Input (Stdin) Output (Stdout)
synonyms The same Stdin as

domainfinder
sprinkle

sprinkle synonyms coolify

coolify sprinkle domainify

domainify coolify available

available domainify The same Stdout as
domainfinder

We then iterate over each command calling the Start method, which runs the
program in the background (as opposed to the Run method which will block our
code until the subprogram exits—which of course is no good since we have to run
five programs at the same time). If anything goes wrong, we bail with log.Fatalln,
but if the program starts successfully, we then defer a call to kill the process. This
helps us ensure the subprograms exit when our main function exits, which will be
when the domainfinder program ends.

Once all of the programs are running, we then iterate over every command again
and wait for it to finish. This is to ensure that domainfinder doesn't exit early and
kill off all the subprograms too soon.

Run the build.sh or build.bat script again and notice that the domainfinder
program has the same behavior as we have seen before, with a much more
elegant interface.

Summary
In this chapter, we learned how five small command-line programs can, when
composed together, produce powerful results while remaining modular. We
avoided tightly coupling our programs so they are still useful in their own right.
For example, we can use our available program just to check if domain names we
manually enter are available or not, or we can use our synonyms program just as
a command-line thesaurus.

We learned how standard streams could be used to build different flows of these
types of programs, and how redirection of the standard input and the standard
output lets us play around with different flows very easily.

Command-line Tools to Find Domain Names

[124]

We learned how simple it is in Go to consume a JSON RESTful APIs web service when
we needed to get synonyms from the Big Hugh Thesaurus. We kept it simple at first
by coding it inline and later refactoring the code to abstract the Thesaurus type into
its own package, which is ready to share. We also consumed a non-HTTP API when
we opened a connection to the WHOIS server and wrote data over raw TCP.

We saw how the math/rand package can bring a little variety and unpredictability,
by allowing us to use pseudo random numbers and decisions in our code, which
meant that each time we run our program, we get different results.

Finally, we built our domainfinder super program that composes all the subprograms
together giving our solution a simple, clean, and elegant interface.

Building Distributed
Systems and Working

with Flexible Data
In this chapter, we will explore transferrable skills that allow us to use schemaless
data and distributed technologies to solve big data problems. The system we will
build in this chapter will prepare us for a future where democratic elections all
happen online—on Twitter of course. Our solution will collect and count votes
by querying Twitter's streaming API for mentions of specific hashtags, and each
component will be capable of horizontally scaling to meet demand. Our use case is
a fun and interesting one, but the core concepts we'll learn and specific technology
choices we'll make are the real focus of this chapter. The ideas discussed here are
directly applicable to any system that needs true-scale capabilities.

Horizontal scaling refers to adding nodes, such as physical machines,
to a system in order to improve its availability, performance, and/
or capacity. Big data companies such as Google can scale by adding
affordable and easy-to-obtain hardware (commonly referred to as
commodity hardware) due to the way they write their software
and architect their solutions. Vertical scaling is synonymous with
increasing the resource available to a single node, such as adding
additional RAM to a box, or a processor with more cores.

In this chapter, you will:

•	 Learn about distributed NoSQL datastores; specifically how to interact with
MongoDB

•	 Learn about distributed messaging queues; specifically Bit.ly's NSQ and how
to use the go-nsq package to easily publish and subscribe to events

Building Distributed Systems and Working with Flexible Data

[126]

•	 Stream live tweet data through Twitter's streaming APIs and manage long
running net connections

•	 Learn about how to properly stop programs with many internal goroutines
•	 Learn how to use low memory channels for signaling

System design
Having a basic design sketched out is often useful, especially in distributed systems
where many components will be communicating with each other in different ways.
We don't want to spend too long on this stage because our design is likely to evolve
as we get stuck into the details, but we will look at a high-level outline so we can
discuss the constituents and how they fit together.

The preceding image shows the basic overview of the system we are going to build:

•	 Twitter is the social media network we all know and love.
•	 Twitter's streaming API allows long-running connections where tweet data

is streamed as quickly as possible.
•	 twittervotes is a program we will write that reads tweets and pushes the

votes into the messaging queue. twittervotes pulls the relevant tweet data,
figures out what is being voted for (or rather, which options are mentioned),
and pushes the vote into NSQ.

•	 NSQ is an open source, real-time distributed messaging platform designed
to operate at scale, built and maintained by Bit.ly. NSQ carries the message
across its instances making it available to anyone who has expressed an
interest in the vote data.

Chapter 5

[127]

•	 counter is a program we will write that listens out for votes on the messaging
queue, and periodically saves the results in the MongoDB database. counter
receives the vote messages from NSQ and keeps an in-memory tally of the
results, periodically pushing an update to persist the data.

•	 MongoDB is an open source document database designed to operate at scale.
•	 web is a web server program that will expose the live results that we will

write in the next chapter.
It could be argued that a single Go program could be written that reads the tweets,
counts the votes, and pushes them to a user interface but such a solution, while being
a great proof of concept, would be very limited in scale. In our design, any one of the
components can be horizontally scaled as the demand for that particular capability
increases. If we have relatively few polls, but lots of people viewing the data, we
can keep the twittervotes and counter instances down and add more web and
MongoDB nodes, or vice versa if the situation is reversed.

Another key advantage to our design is redundancy; since we can have many
instances of our components working at the same time, if one of our boxes disappears
(due to a system crash or power cut, for example) the others can pick up the slack.
Modern architectures often distribute such a system over the geographical expanse
to protect from local natural disasters too. All of these options are available to use if
we build our solution in this way.

We chose the specific technologies in this chapter because of their links to Go (NSQ,
for example, is written entirely in Go), and the availability of well-tested drivers and
packages. Conceptually, however, you can drop in a variety of alternatives as you
see fit.

Database design
We will call our MongoDB database ballots. It will contain a single collection
called polls which is where we will store the poll details, such as the title, the
options, and the results (in a single JSON document). The code for a poll will
look something like this:

{
 "_id": "???",
 "title": "Poll title",
 "options": ["one", "two", "three"],
 "results": {
 "one": 100,
 "two": 200,
 "three": 300
 }
}

Building Distributed Systems and Working with Flexible Data

[128]

The _id field is automatically generated by MongoDB and will be how we identify
each poll. The options field contains an array of string options; these are the hashtags
we will look for on Twitter. The results field is a map where the key represents the
option, and the value represents the total number of votes for each item.

Installing the environment
The code we write in this chapter has real external dependencies that we need to
get set up before we can start to build our system.

Be sure to check out the chapter notes at https://github.com/
matryer/goblueprints if you get stuck on installing any of the
dependencies.

In most cases, services such as mongod and nsqd will have to be started before we
can run our programs. Since we are writing components of a distributed system,
we will have to run each program at the same time, which is as simple as opening
many terminal windows.

NSQ
NSQ is a messaging queue that allows one program to send messages or events to
another, or to many other programs running either locally on the same machine,
or on different nodes connected by a network. NSQ guarantees the delivery of
messages, which means it keeps undelivered messages cached until all interested
parties have received them. This means that, even if we stop our counter program,
we won't miss any votes. You can contrast this capability with fire-and-forget
message queues where information is deemed out-of-date, and therefore is forgotten
if it isn't delivered in time, and where the sender of the messages doesn't care if
the consumer received them or not.

A message queue abstraction allows you to have different components of a system
running in different places, provided they have network connectivity to the queue.
Your programs are decoupled from others; instead, your designs start to care about
the ins and outs of specialized micro-services, rather than the flow of data through a
monolithic program.

https://github.com/matryer/goblueprints
https://github.com/matryer/goblueprints

Chapter 5

[129]

NSQ transfers raw bytes, which means it is up to us how we encode data into those
bytes. For example, we could encode the data as JSON or in a binary format depending
on our needs. In our case, we are going to send the vote option as a string without any
additional encoding, since we are only sharing a single data field.

Open http://nsq.io/deployment/installing.html in a browser (or search
install nsq) and follow the instructions for your environment. You can either
download pre-compiled binaries or build your own from the source. If you have
homebrew installed, installing NSQ is as simple as typing:

brew install nsq

Once you have installed NSQ, you will need to add the bin folder to your PATH
environment variable so that the tools are available in a terminal.

To validate that NSQ is properly installed, open a terminal and run nsqlookupd; if the
program successfully starts, you should see some output similar to the following:

nsqlookupd v0.2.27 (built w/go1.3)

TCP: listening on [::]:4160

HTTP: listening on [::]:4161

We are going to use the default ports to interact with NSQ so take note of the TCP and
HTTP ports listed in the output, as we will be referring to them in our code.

Press Ctrl + C to stop the process for now; we'll start them properly later.

The key tools from the NSQ install that we are going to use are nsqlookupd and
nsqd. The nsqlookupd program is a daemon that manages topology information
about the distributed NSQ environment; it keeps track of all the nsqd producers for
specific topics and provides interfaces for clients to query such information. The nsqd
program is a daemon that does the heavy lifting for NSQ such as receiving, queuing,
and delivering messages from and to interested parties. For more information and
background on NSQ, visit http://nsq.io/.

NSQ driver for Go
The NSQ tools themselves are written in Go, so it is logical that the Bit.ly team
already has a Go package that makes interacting with NSQ very easy. We will
need to use it, so in a terminal, get it using go get:

go get github.com/bitly/go-nsq

http://nsq.io/deployment/installing.html
http://nsq.io/

Building Distributed Systems and Working with Flexible Data

[130]

MongoDB
MongoDB is a document database, which basically allows you to store and query
JSON documents and the data within them. Each document goes into a collection
that can be used to group the documents together without enforcing any schema on
the data inside them. Unlike rows in a traditional RDBMS such as Oracle, Microsoft
SQL Server, or MySQL, it is perfectly acceptable for documents to have a different
shape. For example, a people collection can contain the following three JSON
documents at the same time:

{"name":"Mat","lang":"en","points":57}
{"name":"Laurie","position":"Scrum Master"}
{"position":"Traditional Manager","exists":false}

This flexibility allows data with varying structure to coexist without impacting
performance or wasting space. It is also extremely useful if you expect your
software to evolve over time, as we really always should.

MongoDB was designed to scale while also remaining very easy to work with on
single-box install such as our development machine. When we host our application
for production, we would likely install a more complex multi-sharded, replicated
system, which is distributed across many nodes and locations, but for now, just
running mongod will do.

Head over to http://www.mongodb.org/downloads to grab the latest version
of MongoDB and install it, making sure to register the bin folder with your PATH
environment variable as usual.

To validate that MongoDB is successfully installed, run the mongod command, then
hit Ctrl + C to stop it for now.

MongoDB driver for Go
Gustavo Niemeyer has done a great job in simplifying interactions with MongoDB
with his mgo (pronounced "mango") package hosted at http://labix.org/mgo,
which is go gettable with the following command:

go get gopkg.in/mgo.v2

http://www.mongodb.org/downloads
http://labix.org/mgo

Chapter 5

[131]

Starting the environment
Now that we have all the pieces we need installed, we need to start our environment.
In this section, we are going to:

•	 Start nsqlookupd so that our nsqd instances are discoverable
•	 Start nsqd and tell it which nsqlookupd to use
•	 Start mongod for data services

Each of these daemons should run in their own terminal window, which will make
it easy for us to stop them by just hitting Ctrl + C.

Remember the page number for this section as you will likely revisit
it a few times as you work through this chapter.

In a terminal window, run:

nsqlookupd

Take note of the TCP port, which by default is 4160, and in another terminal
window, run:

nsqd --lookupd-tcp-address=localhost:4160

Make sure the port number in the --lookupd-tcp-address flag matches the TCP
port of the nsqlookupd instance. Once you start nsqd, you will notice some output is
printed to the terminal from both nsqlookupd and nsqd; this indicates that the two
processes are talking to each other.

In yet another window or tab, start MongoDB by running:

mongod --dbpath ./db

The dbpath flag tells MongoDB where to store the data files for our database. You
can pick any location you like, but you'll have to make sure the folder exists before
mongod will run.

By deleting the dbpath folder at any time, you can effectively erase all
data and start afresh. This is especially useful during development.

Now that our environment is running, we are ready to start building our components.

Building Distributed Systems and Working with Flexible Data

[132]

Votes from Twitter
In your $GOPATH/src folder, alongside other projects, create a new folder called
socialpoll for this chapter. This folder won't be a Go package or program by
itself, but will contain our three component programs. Inside socialpoll, create
a new folder called twittervotes and add the obligatory main.go template
(this is important as main packages without a main function won't compile):

package main
func main(){}

Our twittervotes program is going to:

•	 Load all polls from the MongoDB database using mgo, and collect all options
from the options array in each document

•	 Open and maintain a connection to Twitter's streaming APIs looking for
any mention of the options

•	 For each tweet that matches the filter, figure out which option is mentioned
and push that option through to NSQ

•	 If the connection to Twitter is dropped (which is common in long-running
connections as it is actually part of Twitter's streaming API specification)
after a short delay (so we do not bombard Twitter with connection requests),
reconnect and continue

•	 Periodically re-query MongoDB for the latest polls and refresh the connection
to Twitter to make sure we are always looking out for the right options

•	 When the user terminates the program by hitting Ctrl + C, it will gracefully
stop itself

Authorization with Twitter
In order to use the streaming API, we will need authentication credentials from
Twitter's Application Management console, much in the same way we did for our
Gomniauth service providers in Chapter 3, Three Ways to Implement Profile Pictures.
Head over to https://apps.twitter.com and create a new app called something
like SocialPoll (the names have to be unique, so you can have some fun here; the
choice of name doesn't affect the code either way). When your app has been created,
visit the API Keys tab and locate the Your access token section where you need to
create a new access token. After a short delay, refresh the page and notice that you in
fact have two sets of keys and secrets; an API key and a secret, and an access token
and the corresponding secret. Following good coding practices, we are going to set
these values as environment variables so that our program can have access to them
without us having to hardcode them in our source files.

https://apps.twitter.com

Chapter 5

[133]

The keys we will use in this chapter are:

•	 SP_TWITTER_KEY

•	 SP_TWITTER_SECRET

•	 SP_TWITTER_ACCESSTOKEN

•	 SP_TWITTER_ACCESSSECRET

You can set the environment variables however you like, but since the app relies
on them in order to work, creating a new file called setup.sh (for bash shells) or
setup.bat (on Windows) is a good idea since you can check such files into your
source code repository. Insert the following code in setup.sh or setup.bat by
copying the appropriate values from the Twitter app page:

#!/bin/bash
export SP_TWITTER_KEY=yCwwKKnuBnUBrelyTN...
export SP_TWITTER_SECRET=6on0YRYniT1sI3f...
export SP_TWITTER_ACCESSTOKEN=2427-13677...
export SP_TWITTER_ACCESSSECRET=SpnZf336u...

Run the file with the source or call commands to have the values appropriately
set, or add them to your .bashrc or C:\cmdauto.cmd files to save you running
them every time you open a new terminal window.

Extracting the connection
The Twitter streaming API supports HTTP connections that stay open for a long time,
and given the design of our solution, we are going to need to access the net.Conn
object in order to close it from outside of the goroutine in which requests occur. We
can achieve this by providing our own dial method to an http.Transport object
that we will create.

Create a new file called twitter.go inside twittervotes (which is where all things
Twitter-related will live), and insert the following code:

var conn net.Conn
func dial(netw, addr string) (net.Conn, error) {
 if conn != nil {
 conn.Close()
 conn = nil
 }
 netc, err := net.DialTimeout(netw, addr, 5*time.Second)
 if err != nil {

Building Distributed Systems and Working with Flexible Data

[134]

 return nil, err
 }
 conn = netc
 return netc, nil
}

Our bespoke dial function first ensures conn is closed, and then opens a new
connection keeping the conn variable updated with the current connection. If a
connection dies (Twitter's API will do this from time to time) or is closed by us,
we can redial without worrying about zombie connections.

We will periodically close the connection ourselves and initiate a new one, because
we want to reload the options from the database at regular intervals. To do this, we
need a function that closes the connection, and also closes an io.ReadCloser that we
will use to read the body of the responses. Add the following code to twitter.go:

var reader io.ReadCloser
func closeConn() {
 if conn != nil {
 conn.Close()
 }
 if reader != nil {
 reader.Close()
 }
}

Now we can call closeConn at any time to break the ongoing connection with Twitter
and tidy things up. In most cases, our code will load the options from the database
again and open a new connection right away, but if we're shutting the program down
(in response to a Ctrl + C hit) then we can call closeConn just before we exit.

Reading environment variables
Next we are going to write a function that will read the environment variables and
set up the OAuth objects we'll need in order to authenticate the requests. Add the
following code in the twitter.go file:

var (
 authClient *oauth.Client
 creds *oauth.Credentials
)

Chapter 5

[135]

func setupTwitterAuth() {
 var ts struct {
 ConsumerKey string `env:"SP_TWITTER_KEY,required"`
 ConsumerSecret string `env:"SP_TWITTER_SECRET,required"`
 AccessToken string `env:"SP_TWITTER_ACCESSTOKEN,required"`
 AccessSecret string `env:"SP_TWITTER_ACCESSSECRET,required"`
 }
 if err := envdecode.Decode(&ts); err != nil {
 log.Fatalln(err)
 }
 creds = &oauth.Credentials{
 Token: ts.AccessToken,
 Secret: ts.AccessSecret,
 }
 authClient = &oauth.Client{
 Credentials: oauth.Credentials{
 Token: ts.ConsumerKey,
 Secret: ts.ConsumerSecret,
 },
 }
}

Here we define a struct type to store the environment variables that we need to
authenticate with Twitter. Since we don't need to use the type elsewhere, we define it
inline and creating a variable called ts of this anonymous type (that's why we have the
somewhat unusual var ts struct… code). We then use Joe Shaw's elegant envdecode
package to pull in those environment variables for us. You will need to run go get
github.com/joeshaw/envdecode and also import the log package. Our program
will try to load appropriate values for all the fields marked required, and return an
error if it fails to do so, which reminds people that the program won't work without
Twitter credentials.

The strings inside the back ticks alongside each field in struct are called tags, and
are available through a reflection interface, which is how envdecode knows which
variables to look for. Tyler Bunnell and I added the required argument to this package,
which indicates that it is an error for any of the environment variables to be missing
(or empty).

Once we have the keys, we use them to create oauth.Credentials and an oauth.
Client object from Gary Burd's go-oauth package, which will allow us to authorize
requests with Twitter.

Building Distributed Systems and Working with Flexible Data

[136]

Now that we have the ability to control the underlying connection and authorize
requests, we are ready to write the code that will actually build the authorized
request, and return the response. In twitter.go, add the following code:

var (
 authSetupOnce sync.Once
 httpClient *http.Client
)
func makeRequest(req *http.Request, params url.Values) (*http.
Response, error) {
 authSetupOnce.Do(func() {
 setupTwitterAuth()
 httpClient = &http.Client{
 Transport: &http.Transport{
 Dial: dial,
 },
 }
 })
 formEnc := params.Encode()
 req.Header.Set("Content-Type", "application/x-www-form-
urlencoded")
 req.Header.Set("Content-Length", strconv.Itoa(len(formEnc)))
 req.Header.Set("Authorization",
authClient.AuthorizationHeader(creds, "POST", req.URL, params))
 return httpClient.Do(req)
}

We use sync.Once to ensure our initialization code only gets run once despite the
number of times we call makeRequest. After calling the setupTwitterAuth method,
we create a new http.Client using an http.Transport that uses our custom dial
method. We then set the appropriate headers needed for authorization with Twitter by
encoding the specified params object that will contain the options we are querying for.

Reading from MongoDB
In order to load the polls, and therefore the options to search Twitter for, we need
to connect to and query MongoDB. In main.go, add the two functions dialdb
and closedb:

var db *mgo.Session
func dialdb() error {
 var err error
 log.Println("dialing mongodb: localhost")
 db, err = mgo.Dial("localhost")
 return err

Chapter 5

[137]

}
func closedb() {
 db.Close()
 log.Println("closed database connection")
}

These two functions will connect to and disconnect from the locally running
MongoDB instance using the mgo package, and store mgo.Session (the database
connection object) in a global variable called db.

As an additional assignment, see if you can find an elegant way to
make the location of the MongoDB instance configurable so that you
don't need to run it locally.

Assuming MongoDB is running and our code is able to connect, we need to load the
poll objects and extract all the options from the documents, which we will then use
to search Twitter. Add the following Options function to main.go:

type poll struct {
 Options []string
}
func loadOptions() ([]string, error) {
 var options []string
 iter := db.DB("ballots").C("polls").Find(nil).Iter()
 var p poll
 for iter.Next(&p) {
 options = append(options, p.Options...)
 }
 iter.Close()
 return options, iter.Err()
}

Our poll document contains more than just Options, but our program doesn't care
about anything else, so there's no need for us to bloat our poll struct. We use the db
variable to access the polls collection from the ballots database, and call the mgo
package's fluent Find method, passing nil (meaning no filtering).

A fluent interface (first coined by Eric Evans and Martin Fowler) refers
to an API design that aims to make the code more readable by allowing
you to chain together method calls. This is achieved by each method
returning the context object itself, so that another method can be called
directly afterwards. For example, mgo allows you to write queries such
as this:

query := col.Find(q).Sort("field").Limit(10).Skip(10)

Building Distributed Systems and Working with Flexible Data

[138]

We then get an iterator by calling the Iter method, which allows us to access each
poll one by one. This is a very memory-efficient way of reading the poll data, because
it only ever uses a single poll object. If we were to use the All method instead, the
amount of memory we'd use would depend on the number of polls we had in our
database, which would be out of our control.

When we have a poll, we use the append method to build up the options slice. Of
course, with millions of polls in the database, this slice too would grow large and
unwieldy. For that kind of scale, we would probably run multiple twittervotes
programs, each dedicated to a portion of the poll data. A simple way to do this
would be to break polls into groups based on the letters the titles begin with, such
as group A-N and O-Z. A somewhat more sophisticated approach would be to add
a field to the poll document grouping it up in a more controlled manner, perhaps
based on the stats for the other groups so that we are able to balance the load across
many twittervotes instances.

The append built-in function is actually a variadic function, which
means you can pass multiple elements for it to append. If you have a
slice of the correct type, you can add ... to the end, which simulates
the passing of each item of the slice as a different argument.

Finally, we close the iterator and clean up any used memory before returning the
options and any errors that occurred while iterating (by calling the Err method on
the mgo.Iter object).

Reading from Twitter
Now we are able to load the options and make authorized requests to the Twitter
API. We are thus ready to write the code that initiates the connection, and
continuously reads from the stream until either we call our closeConn method, or
Twitter closes the connection for one reason or another. The structure contained in
the stream is a complex one containing all kinds of information about the tweet—
who made it and when, and even what links or mentions of users occur in the body
(see Twitter's API documentation for more details). However, we are only interested
in the tweet text itself so you need not worry about all the other noise; add the
following structure to twitter.go:

type tweet struct {
 Text string
}

Chapter 5

[139]

This may feel incomplete, but think about how clear it makes our
intentions to other programmers who might see our code: a tweet
has some text, and that is all we care about.

Using this new structure, in twitter.go, add the following readFromTwitter
function that takes a send-only channel called votes; this is how this function will
inform the rest of our program that it has noticed a vote on twitter:

func readFromTwitter(votes chan<- string) {
 options, err := loadOptions()
 if err != nil {
 log.Println("failed to load options:", err)
 return
 }
 u, err := url.Parse("https://stream.twitter.com/1.1/statuses/filter.
json")
 if err != nil {
 log.Println("creating filter request failed:", err)
 return
 }
 query := make(url.Values)
 query.Set("track", strings.Join(options, ","))
 req, err := http.NewRequest("POST", u.String(), strings.
NewReader(query.Encode()))
 if err != nil {
 log.Println("creating filter request failed:", err)
 return
 }
 resp, err := makeRequest(req, query)
 if err != nil {
 log.Println("making request failed:", err)
 return
 }
 reader := resp.Body
 decoder := json.NewDecoder(reader)
 for {
 var tweet tweet
 if err := decoder.Decode(&tweet); err != nil {
 break
 }
 for _, option := range options {
 if strings.Contains(
 strings.ToLower(tweet.Text),

Building Distributed Systems and Working with Flexible Data

[140]

 strings.ToLower(option),
) {
 log.Println("vote:", option)
 votes <- option
 }
 }
 }
}

In the preceding code, after loading the options from all the polls data (by calling the
loadOptions function), we use url.Parse to create a url.URL object describing the
appropriate endpoint on Twitter. We build a url.Values object called query, and set
the options as a comma-separated list. As per the API, we make a new POST request
using the encoded url.Values object as the body, and pass it to makeRequest along
with the query object itself. All being well, we make a new json.Decoder from the
body of the request, and keep reading inside an infinite for loop by calling the Decode
method. If there is an error (probably due to the connection being closed), we simply
break the loop and exit the function. If there is a tweet to read, it will be decoded into
the tweet variable, which will give us access to the Text property (the 140 characters
of the tweet itself). We then iterate over all possible options, and if the tweet has
mentioned it, we send it on the votes channel. This technique also allows a tweet to
contain many votes at the same time, something you may or may not decide to change
based on the rules of the election.

The votes channel is send-only (which means we cannot receive on it),
since it is of the type chan<- string. Think of the little "arrow" telling
us which way messages will flow: either into the channel or out of it.
This is a great way to express intent—it's clear that we never intend to
read votes using our readFromTwitter function; rather we will only
send them on that channel.

Terminating the program whenever Decode returns an error doesn't provide a
very robust solution. This is because the Twitter API documentation states that
the connection will drop from time to time, and clients should consider this when
consuming the services. And remember, we are going to terminate the connection
periodically too, so we need to think about a way to reconnect once the connection
is dropped.

Signal channels
A great use of channels in Go is to signal events between code running in different
goroutines. We are going to see a real-world example of this when we write our
next function.

Chapter 5

[141]

The purpose of the function is to start a goroutine that continually calls the
readFromTwitter function (with the specified votes channel to receive the votes
on), until we signal that we want it to stop. And once it has stopped, we want to be
notified through another signal channel. The return of the function will be a channel
of struct{}; a signal channel.

Signal channels have some interesting properties that are worth taking a closer
look at. Firstly, the type sent down the channels is an empty struct{}, instances
of which actually take up zero bytes, since it has no fields. So struct{}{} is a great
memory-efficient option for signaling events. Some people use bool types, which
is also fine, although true and false both take up a byte of memory.

Head over to http://play.golang.org and try this out for yourself.
The size of a bool is 1:

fmt.Println(reflect.TypeOf(true).Size())

= 1

Whereas the size of struct{}{} is 0:
fmt.Println(reflect.TypeOf(struct{}{}).Size())
= 0

The signal channels also have a buffer size of 1, which means that execution will
not block until something reads the signal from the channel.

We are going to employ two signal channels in our code, one that we pass into our
function that tells our goroutine that it should stop, and another (provided by the
function) that signals once stopping is complete.

In twitter.go, add the following function:

func startTwitterStream(stopchan <-chan struct{}, votes chan<- string)
<-chan struct{} {
 stoppedchan := make(chan struct{}, 1)
 go func() {
 defer func() {
 stoppedchan <- struct{}{}
 }()
 for {
 select {
 case <-stopchan:
 log.Println("stopping Twitter...")
 return
 default:

http://play.golang.org

Building Distributed Systems and Working with Flexible Data

[142]

 log.Println("Querying Twitter...")
 readFromTwitter(votes)
 log.Println(" (waiting)")
 time.Sleep(10 * time.Second) // wait before reconnecting
 }
 }
 }()
 return stoppedchan
}

In the preceding code, the first argument stopchan is a channel of type <-chan
struct{}, a receive-only signal channel. It is this channel that, outside the code,
will signal on, which will tell our goroutine to stop. Remember that it's receive-only
inside this function, the actual channel itself will be capable of sending. The second
argument is the votes channel on which votes will be sent. The return type of our
function is also a signal channel of type <-chan struct{}; a receive-only channel
that we will use to indicate that we have stopped.

These channels are necessary because our function triggers its own goroutine,
and immediately returns, so without this, calling code would have no idea if the
spawned code were still running or not.

The first thing we do in the startTwitterStream function is make our stoppedchan,
and defer the sending of a struct{}{} to indicate that we have finished when our
function exits. Notice that stoppedchan is a normal channel so even though it is
returned as a receive-only, we will be able to send on it from within this function.

We then start an infinite for loop in which we select from one of two channels. The
first is the stopchan (the first argument), which would indicate that it was time to
stop, and return (thus triggering the deferred signaling on stoppedchan). If that hasn't
happened, we will call readFromTwitter (passing in the votes channel), which will
go and load the options from the database and open the connection to Twitter.

When the Twitter connection dies, our code will return here where we sleep for ten
seconds using the time.Sleep function. This is to give the Twitter API a rest in case
it closed the connection due to overuse. Once we've rested, we re-enter the loop and
check again on the stopchan channel to see if the calling code wants us to stop or not.

To make this flow clear, we are logging out key statements that will not only help
us debug our code, but also let us peek into the inner workings of this somewhat
complicated mechanism.

Chapter 5

[143]

Publishing to NSQ
Once our code is successfully noticing votes on Twitter and sending them down the
votes channel, we need a way to publish them into an NSQ topic; after all, this is the
point of the twittervotes program.

We will write a function called publishVotes that will take the votes channel, this
time of type <-chan string (a receive-only channel) and publish each string that is
received from it.

In our previous functions, the votes channel was of type chan<-
string, but this time it's of the type <-chan string. You might
think this is a mistake, or even that it means we cannot use the same
channel for both but you would be wrong. The channel we create later
will be made with make(chan string), neither receive or only send,
and can act in both cases. The reason for using the <- operator on a
channel in arguments is to make clear the intent of what the channel
will be used for; or in the case where it is the return type, to prevent
users from accidentally sending on channels intended for receiving or
vice versa. The compiler will actually produce an error if they use such
a channel incorrectly.

Once the votes channel is closed (this is how external code will tell our function to
stop working), we will stop publishing and send a signal down the returned stop
signal channel.

Add the publishVotes function to main.go:

func publishVotes(votes <-chan string) <-chan struct{} {
 stopchan := make(chan struct{}, 1)
 pub, _ := nsq.NewProducer("localhost:4150", nsq.NewConfig())
 go func() {
 for vote := range votes {
 pub.Publish("votes", []byte(vote)) // publish vote
 }
 log.Println("Publisher: Stopping")
 pub.Stop()
 log.Println("Publisher: Stopped")
 stopchan <- struct{}{}
 }()
 return stopchan
}

Building Distributed Systems and Working with Flexible Data

[144]

Again the first thing we do is to create the stopchan, which we later return,
this time not deferring the signaling but doing it inline by sending a struct{}{}
down stopchan.

The difference is to show alternative options: within one codebase you
should pick a style you like and stick with it, until a standard emerges
within the community; in which case we should all go with that.

We then create an NSQ producer by calling NewProducer and connecting to the
default NSQ port on localhost, using a default configuration. We start a goroutine,
which uses another great built-in feature of the Go language that lets us continually
pull values from a channel (in our case the votes channel) just by doing a normal
for…range operation on it. Whenever the channel has no values, execution will be
blocked until a value comes down the line. If the votes channel is closed, the for
loop will exit.

To learn more about the power of channels in Go, it is highly
recommended that you seek out blog posts and videos by John
Graham-Cumming, in particular one entitled A Channel Compendium
that he presented at Gophercon 2014 and which contains a brief
history of channels, including their origin. (Interestingly, John was
also the guy who successfully petitioned the British Government to
officially apologize for its treatment of Alan Turing.)

When the loop exits (after the votes channel is closed) the publisher is stopped,
following which the stopchan signal is sent.

Gracefully starting and stopping
When our program is terminated, we want to do a few things before actually exiting;
namely closing our connection to Twitter and stopping the NSQ publisher (which
actually deregisters its interest in the queue). To achieve this, we have to override
the default Ctrl + C behavior.

The upcoming code blocks all go inside the main function; they are
broken up so we can discuss each section before continuing.

Add the following code inside the main function:

var stoplock sync.Mutex
stop := false
stopChan := make(chan struct{}, 1)

Chapter 5

[145]

signalChan := make(chan os.Signal, 1)
go func() {
 <-signalChan
 stoplock.Lock()
 stop = true
 stoplock.Unlock()
 log.Println("Stopping...")
 stopChan <- struct{}{}
 closeConn()
}()
signal.Notify(signalChan, syscall.SIGINT, syscall.SIGTERM)

Here we create a stop bool with an associated sync.Mutex so that we can access it
from many goroutines at the same time. We then create two more signal channels,
stopChan and signalChan, and use signal.Notify to ask Go to send the signal
down the signalChan when someone tries to halt the program (either with the
SIGINT interrupt, or the SIGTERM termination POSIX signals). The stopChan is how
we indicate that we want our processes to terminate, and we pass it as an argument
to startTwitterStream later.

We then run a goroutine that blocks waiting for the signal by trying to read from
signalChan; this is what the <- operator does in this case (it's trying to read from
the channel). Since we don't care about the type of signal, we don't bother capturing
the object returned on the channel. Once a signal is received, we set stop to true,
and close the connection. Only when one of the specified signals is sent will the
rest of the goroutine code run, which is how we are able to perform teardown code
before exiting the program.

Add the following piece of code (inside the main function) to open and defer the
closing of the database connection:

if err := dialdb(); err != nil {
 log.Fatalln("failed to dial MongoDB:", err)
}
defer closedb()

Since the readFromTwitter method reloads the options from the database each
time, and because we want to keep our program updated without having to restart
it, we are going to introduce one final goroutine. This goroutine will simply call
closeConn every minute, causing the connection to die, and cause readFromTwitter
to be called over again. Insert the following code at the bottom of the main function
to start all of these processes, and then wait for them to gracefully stop:

// start things
votes := make(chan string) // chan for votes

Building Distributed Systems and Working with Flexible Data

[146]

publisherStoppedChan := publishVotes(votes)
twitterStoppedChan := startTwitterStream(stopChan, votes)
go func() {
 for {
 time.Sleep(1 * time.Minute)
 closeConn()
 stoplock.Lock()
 if stop {
 stoplock.Unlock()
 break
 }
 stoplock.Unlock()
 }
}()
<-twitterStoppedChan
close(votes)
<-publisherStoppedChan

First we make the votes channel that we have been talking about throughout this
section, which is a simple channel of string. Notice that it is neither a send (chan<-
) or receive (<-chan) channel; in fact, making such channels makes little sense. We
then call publishVotes, passing in the votes channel for it to receive from, and
capturing the returned stop signal channel as publisherStoppedChan. Similarly, we
call startTwitterStream passing in our stopChan from the beginning of the main
function, and the votes channel for it to send to, while capturing the resulting stop
signal channel as twitterStoppedChan.

We then start our refresher goroutine, which immediately enters an infinite for loop
before sleeping for a minute and closing the connection via the call to closeConn.
If the stop bool has been set to true (in that previous goroutine), we will break the
loop and exit, otherwise we will loop around and wait another minute before closing
the connection again. The use of the stoplock is important because we have two
goroutines that might try to access the stop variable at the same time but we want
to avoid collisions.

Once the goroutine has started, we then block on the twitterStoppedChan by
attempting to read from it. When successful (which means the signal was sent on the
stopChan), we close the votes channel which will cause the publisher's for…range
loop to exit, and the publisher itself to stop, after which the signal will be sent on the
publisherStoppedChan, which we wait for before exiting.

Chapter 5

[147]

Testing
To make sure our program works, we need to do two things: first we need to create
a poll in the database, and second, we need to peer inside the messaging queue to
see if the messages are indeed being generated by twittervotes.

In a terminal, run the mongo command to open a database shell that allows us to
interact with MongoDB. Then enter the following commands to add a test poll:

> use ballots

switched to db ballots

> db.polls.insert({"title":"Test poll","options":["happy","sad","fail","w
in"]})

The preceding commands add a new item to the polls collection in the ballots
database. We are using some common words for options that are likely to be
mentioned by people on Twitter so that we can observe real tweets being translated
into messages. You might notice that our poll object is missing the results field;
this is fine since we are dealing with unstructured data where documents do not
have to adhere to a strict schema. The counter program we are going to write in
the next section will add and maintain the results data for us later.

Press Ctrl + C to exit the MongoDB shell and type the following command:

nsq_tail --topic="votes" --lookupd-http-address=localhost:4161

The nsq_tail tool connects to the specified messaging queue topic and outputs
any messages that it notices. This is where we will validate that our twittervotes
program is sending messages.

In a separate terminal window, let's build and run the twittervotes program:

go build –o twittervotes

./twittervotes

Now switch back to the window running nsq_tail and notice that messages are
indeed being generated in response to live Twitter activity.

If you aren't seeing much activity, try looking up trending hashtags on
Twitter and adding another poll containing those options.

Building Distributed Systems and Working with Flexible Data

[148]

Counting votes
The second program we are going to implement is the counter tool, which will
be responsible for watching out for votes in NSQ, counting them, and keeping
MongoDB up to date with the latest numbers.

Create a new folder called counter alongside twittervotes, and add the
following code to a new main.go file:

package main
import (
 "flag"
 "fmt"
 "os"
)
var fatalErr error
func fatal(e error) {
 fmt.Println(e)
 flag.PrintDefaults()
 fatalErr = e
}
func main() {
 defer func() {
 if fatalErr != nil {
 os.Exit(1)
 }
 }()
}

Normally when we encounter an error in our code, we use a call like log.Fatal or
os.Exit, which immediately terminates the program. Exiting the program with a non-
zero exit code is important, because it is our way of telling the operating system that
something went wrong, and we didn't complete our task successfully. The problem
with the normal approach is that any deferred functions we have scheduled (and
therefore any tear down code we need to run), won't get a chance to execute.

The pattern employed in the preceding code snippet lets us call the fatal function
to record that an error occurred. Note that only when our main function exits will
the deferred function run, which in turn calls os.Exit(1) to exit the program with
an exit code of 1. Because the deferred statements are run in LIFO (last in, first out)
order, the first function we defer will be the last function to be executed, which
is why the first thing we do in the main function is to defer the exiting code. This
allows us to be sure that other functions we defer will be called before the program
exits. We'll use this feature to ensure our database connection gets closed regardless
of any errors.

Chapter 5

[149]

Connecting to the database
The best time to think about cleaning up resources, such as database connections, is
immediately after you have successfully obtained the resource; Go's defer keyword
makes this easy. At the bottom of the main function, add the following code:

log.Println("Connecting to database...")
db, err := mgo.Dial("localhost")
if err != nil {
 fatal(err)
 return
}
defer func() {
 log.Println("Closing database connection...")
 db.Close()
}()
pollData := db.DB("ballots").C("polls")

This code uses the familiar mgo.Dial method to open a session to the locally running
MongoDB instance and immediately defers a function that closes the session. We can
be sure that this code will run before our previously deferred statement containing
the exit code (because deferred functions are run in the reverse order in which
they were called). Therefore, whatever happens in our program, we know that the
database session will definitely and properly close.

The log statements are optional, but will help us see what's going
on when we run and exit our program.

At the end of the snippet, we use the mgo fluent API to keep a reference of the
ballots.polls data collection in the pollData variable, which we will use later
to make queries.

Consuming messages in NSQ
In order to count the votes, we need to consume the messages on the votes topic
in NSQ, and we'll need a place to store them. Add the following variables to the
main function:

var counts map[string]int
var countsLock sync.Mutex

Building Distributed Systems and Working with Flexible Data

[150]

A map and a lock (sync.Mutex) is a common combination in Go, because we
will have multiple goroutines trying to access the same map and we need to
avoid corrupting it by trying to modify or read it at the same time.

Add the following code to the main function:

log.Println("Connecting to nsq...")
q, err := nsq.NewConsumer("votes", "counter", nsq.NewConfig())
if err != nil {
 fatal(err)
 return
}

The NewConsumer function allows us to set up an object that will listen on the votes
NSQ topic, so when twittervotes publishes a vote on that topic, we can handle it
in this program. If NewConsumer returns an error, we'll use our fatal function to
record it and return.

Next we are going to add the code that handles messages (votes) from NSQ:

q.AddHandler(nsq.HandlerFunc(func(m *nsq.Message) error {
 countsLock.Lock()
 defer countsLock.Unlock()
 if counts == nil {
 counts = make(map[string]int)
 }
 vote := string(m.Body)
 counts[vote]++
 return nil
}))

We call the AddHandler method on nsq.Consumer and pass it a function that will
be called for every message received on the votes topic.

When a vote comes in, the first thing we do is lock the countsLock mutex. Next we
defer the unlocking of the mutex for when the function exits. This allows us to be sure
that while NewConsumer is running, we are the only ones allowed to modify the map;
others will have to wait until our function exits before they can use it. Calls to the Lock
method block execution while the lock is in place, and it only continues when the lock
is released by a call to Unlock. This is why it's vital that every Lock call has an Unlock
counterpart, otherwise we will deadlock our program.

Every time we receive a vote, we check if counts is nil and make a new map if it is,
because once the database has been updated with the latest results, we want to reset
everything and start at zero. Finally we increase the int value by one for the given
key, and return nil indicating no errors.

Chapter 5

[151]

Although we have created our NSQ consumer, and added our handler function,
we still need to connect to the NSQ service, which we will do by adding the
following code:

if err := q.ConnectToNSQLookupd("localhost:4161"); err != nil {
 fatal(err)
 return
}

It is important to note that we are actually connecting to the HTTP port of the
nsqlookupd instance, rather than NSQ instances; this abstraction means that our
program doesn't need to know where the messages are coming from in order to
consume them. If we fail to connect to the server (for instance if we forget to start it),
we'll get an error, which we report to our fatal function before immediately returning.

Keeping the database updated
Our code will listen out for votes, and keep a map of the results in memory, but that
information is so far trapped inside our program. Next, we need to add the code that
will periodically push the results to the database:

log.Println("Waiting for votes on nsq...")
var updater *time.Timer
updater = time.AfterFunc(updateDuration, func() {
 countsLock.Lock()
 defer countsLock.Unlock()
 if len(counts) == 0 {
 log.Println("No new votes, skipping database update")
 } else {
 log.Println("Updating database...")
 log.Println(counts)
 ok := true
 for option, count := range counts {
 sel := bson.M{"options": bson.M{"$in": []string{option}}}
 up := bson.M{"$inc": bson.M{"results." + option: count}}
 if _, err := pollData.UpdateAll(sel, up); err != nil {
 log.Println("failed to update:", err)
 ok = false
 }
 }
 if ok {
 log.Println("Finished updating database...")

Building Distributed Systems and Working with Flexible Data

[152]

 counts = nil // reset counts
 }
 }
 updater.Reset(updateDuration)
})

The time.AfterFunc function calls the function after the specified duration in a
goroutine of its own. At the end we call Reset, which starts the process again; this
allows us to schedule our update code to run at regular intervals.

When our update function runs, the first thing we do is lock the countsLock, and
defer its unlocking. We then check to see if there are any values in the counts map.
If there aren't, we just log that we're skipping the update and wait for next time.

If there are some votes, we iterate over the counts map pulling out the option and
number of votes (since the last update), and use some MongoDB magic to update
the results.

MongoDB stores BSON (short for Binary JSON) documents internally,
which are easier to traverse than normal JSON documents, and is why
the mgo package comes with mgo/bson encoding package. When
using mgo, we will often use bson types, such as the bson.M map to
describe concepts for MongoDB.

We first create the selector for our update operation using the bson.M shortcut type,
which is similar to creating map[string]interface{} types. The selector we create
will look something like this:

{
 "options": {
 "$in": ["happy"]
 }
}

In MongoDB, the preceding BSON specifies that we want to select polls where
"happy" is one of the items in the options array.

Next, we use the same technique to generate the update operation, which looks
something like this:

{
 "$inc": {
 "results.happy": 3
 }
}

Chapter 5

[153]

In MongoDB, the preceding BSON specifies that we want to increase the results.
happy field by 3. If there is no results map in the poll, one will be created, and if
there is no happy key inside results, 0 will be assumed.

We then call the UpdateAll method on our pollsData query to issue the command
to the database, which will in turn update every poll that matches the selector
(contrast this to the Update method, which will update only one). If something
goes wrong, we report it and set the ok Boolean to false. If all goes well, we set
the counts map to nil, since we want to reset the counter.

We are going to specify the updateDuration as a constant at the top of the file,
which will make it easy for us to change when we are testing our program. Add
the following code above the main function:

const updateDuration = 1 * time.Second

Responding to Ctrl + C
The last thing to do before our program is ready is to make sure our main function
waits for operations to complete before exiting, like we did in our twittervotes
program. Add the following code at the end of the main function:

termChan := make(chan os.Signal, 1)
signal.Notify(termChan, syscall.SIGINT, syscall.SIGTERM, syscall.
SIGHUP)
for {
 select {
 case <-termChan:
 updater.Stop()
 q.Stop()
 case <-q.StopChan:
 // finished
 return
 }
}

Here we have employed a slightly different tactic than before. We trap the
termination event, which will cause a signal to go down termChan when we
hit Ctrl + C. Next we start an infinite loop, inside which we use Go's select
structure to allow us to run code if we receive something on either termChan,
or the StopChan of the consumer.

Building Distributed Systems and Working with Flexible Data

[154]

In fact, we will only ever get a termChan signal first in response to a Ctrl+C-press,
at which point we stop the updater timer and ask the consumer to stop listening for
votes. Execution then re-enters the loop and will block until the consumer reports that
it has indeed stopped by signaling on its StopChan. When that happens, we're done
and we exit, at which point our deferred statement runs, which, if you remember,
tidies up the database session.

Running our solution
It's time to see our code in action. Be sure to have nsqlookupd, nsqd, and mongod
running in separate terminal windows with:

nsqlookupd

nsqd --lookupd-tcp-address=127.0.0.1:4160

mongod --dbpath ./db

If you haven't already done so, make sure the twittervotes program is running
too. Then in the counter folder, build and run our counting program:

go build -o counter

./counter

You should see periodic output describing what work counter is doing, such as:

No new votes, skipping database update

Updating database...

map[win:2 happy:2 fail:1]

Finished updating database...

No new votes, skipping database update

Updating database...

map[win:3]

Finished updating database...

The output will of course vary since we are actually responding to real
live activity on Twitter.

Chapter 5

[155]

We can see that our program is receiving vote data from NSQ, and reports to
be updating the database with the results. We can confirm this by opening the
MongoDB shell and querying the poll data to see if the results map is being
updated. In another terminal window, open the MongoDB shell:

mongo

Ask it to use the ballots database:

> use ballots

switched to db ballots

Use the find method with no arguments to get all polls (add the pretty method to
the end to get nicely formatted JSON):

> db.polls.find().pretty()

{

	 "_id" : ObjectId("53e2a3afffbff195c2e09a02"),

	 "options" : [

		 "happy","sad","fail","win"

],

	 "results" : {

		 "fail" : 159, "win" : 711,

		 "happy" : 233, "sad" : 166,

	 },

	 "title" : "Test poll"

}

The results map is indeed being updated, and at any point in time contains the
total number of votes for each option.

Summary
In this chapter we covered a lot of ground. We learned different techniques for
gracefully shutting down programs using signaling channels, which is especially
important when our code has some work to do before it can exit. We saw that
deferring the reporting of fatal errors at the start of our program can give our
other deferred functions a chance to execute before the process ends.

Building Distributed Systems and Working with Flexible Data

[156]

We also discovered how easy it is to interact with MongoDB using the mgo package,
and how to use BSON types when describing concepts for the database. The bson.M
alternative to map[string]interface{} helps us keep our code more concise,
while still providing all the flexibility we need when working with unstructured
or schemaless data.

We learned about message queues and how they allow us to break apart the
components of a system into isolated and specialized micro-services. We started
an instance of NSQ by first running the lookup daemon nsqlookupd, before running
a single nsqd instance and connecting them together via a TCP interface. We were
then able to publish votes to the queue in twittervotes, and connect to the lookup
daemon to run a handler function for every vote sent in our counter program.

While our solution is actually performing a pretty simple task, the architecture we
have put together in this chapter is capable of doing some pretty great things.

•	 We eliminated the need for our twittervotes and counter programs to run
on the same machine—as long as they can both connect to the appropriate
NSQ, they will function as expected regardless of where they are running.

•	 We can distribute our MongoDB and NSQ nodes across many
physical machines which would mean our system is capable of gigantic
scale—whenever resources start running low, we can add new boxes to
cope with the demand.

•	 When we add other applications that need to query and read the results
from polls, we can be sure that our database services are highly available
and capable of delivering.

•	 We can spread our database across geographical expanses replicating
data for backup so we don't lose anything when disaster strikes.

•	 We can build a multi-node, fault tolerant NSQ environment, which means
when our twittervotes program learns of interesting tweets, there will
always be somewhere to send the data.

•	 We could write many more programs that generate votes from different
sources; the only requirement is that they know how to put messages
into NSQ.

•	 In the next chapter, we will build a RESTful data service of our own,
through which we will expose the functionality of our social polling
application. We will also build a web interface that lets users create their
own polls, and visualize the results.

Exposing Data and
Functionality through
a RESTful Data Web

Service API
In the previous chapter, we built a service that reads tweets from Twitter, counts
the hashtag votes, and stores the results in a MongoDB database. We also used the
MongoDB shell to add polls and see the poll results. This approach is fine if we are
the only ones using our solution, but it would be madness if we released our project
and expected users to connect directly to our MongoDB instance in order to use the
service we built.

Therefore, in this chapter, we are going to build a RESTful data service through which
the data and functionality will be exposed. We will also put together a simple website
that consumes the new API. Users may then either use our website to create and
monitor polls or build their own application on top of the web services we release.

The code in this chapter depends on the code in Chapter 5, Building
Distributed Systems and Working with Flexible Data, so it is recommended
that you complete that chapter first, especially since it covers setting up
the environment that the code in this chapter runs on.

Specifically, you will learn:

•	 How wrapping http.HandlerFunc types can give us a simple but powerful
pipeline of execution for our HTTP requests

•	 How to safely share data between HTTP handlers

Exposing Data and Functionality through a RESTful Data Web Service API

[158]

•	 Best practices for writing handlers responsible for exposing data
•	 Where small abstractions can allow us to write the simplest possible

implementations now, but leave room to improve them later without
changing the interface

•	 How adding simple helper functions and types to our project will prevent
us from (or at least defer) adding dependencies on external packages

RESTful API design
For an API to be considered RESTful, it must adhere to a few principles that stay
true to the original concepts behind the Web, and are already known to most
developers. Such an approach allows us to make sure we aren't building anything
strange or unusual into our API while also giving our users a head start towards
consuming it, since they are already familiar with its concepts.

Some of the most important RESTful design concepts are:

•	 HTTP methods describe the kind of action to take, for example, GET methods
will only ever read data, while POST requests will create something

•	 Data is expressed as a collection of resources
•	 Actions are expressed as changes to data
•	 URLs are used to refer to specific data
•	 HTTP headers are used to describe the kind of representation coming into

and going out of the server

For an in-depth overview of these and other details of RESTful designs,
see the Wikipedia article at http://en.wikipedia.org/wiki/
Representational_state_transfer.

The following table shows the HTTP methods and URLs that represent the actions
that we will support in our API, along with a brief description and an example use
case of how we intend the call to be used:

Request Description Use case
GET /polls/ Read all polls Show a list of polls to the users
GET /polls/{id} Read the poll Show details or results of a specific poll
POST /polls/ Create a poll Create a new poll
DELETE /polls/{id} Delete a poll Delete a specific poll

The {id} placeholder represents where in the path the unique ID for a poll will go.

http://en.wikipedia.org/wiki/Representational_state_transfer
http://en.wikipedia.org/wiki/Representational_state_transfer

Chapter 6

[159]

Sharing data between handlers
If we want to keep our handlers as pure as the http.Handler interface from the
Go standard library, while still extracting common functionality into our own
methods, we need a way of sharing data between handlers. The HandlerFunc
signature that follows tells us that we are only allowed to pass in an http.
ResponseWriter object and an http.Request object, and nothing else:

type HandlerFunc func(http.ResponseWriter, *http.Request)

This means that we cannot create and manage database session objects in one
place and pass them into our handlers, which is ideally what we want to do.

Instead, we are going to implement an in-memory map of per-request data,
and provide an easy way for handlers to access it. Alongside the twittervotes
and counter folders, create a new folder called api and create a new file called
vars.go inside it. Add the following code to the file:

package main
import (
 "net/http"
 "sync"
)
var vars map[*http.Request]map[string]interface{}
var varsLock sync.RWMutex

Here we declare a vars map that has a pointer to an http.Request type as its key,
and another map as the value. We will store the map of variables keyed with the
request instances that the variables belong to. The varsLock mutex is important,
as our handlers will all be trying to access and change the vars map at the same
time as handling many concurrent HTTP requests, and we need to ensure that
they do this safely.

Next we are going to add the OpenVars function that allows us to prepare the vars
map to hold variables for a particular request:

func OpenVars(r *http.Request) {
 varsLock.Lock()
 if vars == nil {
 vars = map[*http.Request]map[string]interface{}{}
 }
 vars[r] = map[string]interface{}{}
 varsLock.Unlock()
}

Exposing Data and Functionality through a RESTful Data Web Service API

[160]

This function first locks the mutex so that we can safely modify the map, before
ensuring that vars contains a non-nil map, which would otherwise cause a panic when
we try to access its data. Finally, it assigns a new empty map value using the specified
http.Request pointer as the key, before unlocking the mutex and therefore freeing
other handlers to interact with it.

Once we have finished handling the request, we need a way to clean up the
memory that we are using here; otherwise the memory footprint of our code would
continuously increase (also known as a memory leak). We do this by adding a
CloseVars function:

func CloseVars(r *http.Request) {
 varsLock.Lock()
 delete(vars, r)
 varsLock.Unlock()
}

This function safely deletes the entry in the vars map for the request. As long as
we call OpenVars before we try to interact with the variables, and CloseVars when
we have finished, we will be free to safely store and retrieve data for each request.
However, we don't want our handler code to have to worry about locking and
unlocking the map whenever it needs to get or set some data, so let's add two
helper functions, GetVar and SetVar:

func GetVar(r *http.Request, key string) interface{} {
 varsLock.RLock()
 value := vars[r][key]
 varsLock.RUnlock()
 return value
}
func SetVar(r *http.Request, key string, value interface{}) {
 varsLock.Lock()
 vars[r][key] = value
 varsLock.Unlock()
}

The GetVar function will make it easy for us to get a variable from the map for the
specified request, and SetVar allows us to set one. Notice that the GetVar function
calls RLock and RUnlock rather than Lock and Unlock; this is because we're using
sync.RWMutex, which means it's safe for many reads to occur at the same time, as
long as a write isn't happening. This is good for performance on items that are safe to
concurrently read from. With a normal mutex, Lock would block execution—waiting
for the thing that has locked it to unlock it—while RLock will not.

Chapter 6

[161]

Wrapping handler functions
One of the most valuable patterns to learn when building web services and
websites in Go is one we already utilized in Chapter 2, Adding Authentication, where
we decorated http.Handler types by wrapping them with other http.Handler
types. For our RESTful API, we are going to apply this same technique to http.
HandlerFunc functions, to deliver an extremely powerful way of modularizing
our code without breaking the standard func(w http.ResponseWriter, r *http.
Request) interface.

API key
Most web APIs require clients to register an API key for their application, which they
are asked to send along with every request. Such keys have many purposes, ranging
from simply identifying which app the requests are coming from to addressing
authorization concerns in situations where some apps are only able to do limited
things based on what a user has allowed. While we don't actually need to implement
API keys for our application, we are going to ask clients to provide one, which will
allow us to add an implementation later while keeping the interface constant.

Add the essential main.go file inside your api folder:

package main
func main(){}

Next we are going to add our first HandlerFunc wrapper function called
withAPIKey to the bottom of main.go:

func withAPIKey(fn http.HandlerFunc) http.HandlerFunc {
 return func(w http.ResponseWriter, r *http.Request) {
 if !isValidAPIKey(r.URL.Query().Get("key")) {
 respondErr(w, r, http.StatusUnauthorized, "invalid API key")
 return
 }
 fn(w, r)
 }
}

Exposing Data and Functionality through a RESTful Data Web Service API

[162]

As you can see, our withAPIKey function both takes an http.HandlerFunc type
as an argument and returns one; this is what we mean by wrapping in this context.
The withAPIKey function relies on a number of other functions that we are yet to
write, but you can clearly see what's going on. Our function immediately returns a
new http.HandlerFunc type that performs a check for the query parameter key by
calling isValidAPIKey. If the key is deemed invalid (by the return of false), we
respond with an invalid API key error. To use this wrapper, we simply pass an
http.HandlerFunc type into this function to enable the key parameter check. Since
it returns an http.HandlerFunc type too, the result can then be passed into other
wrappers or given directly to the http.HandleFunc function to actually register it
as the handler for a particular path pattern.

Let's add our isValidAPIKey function next:

func isValidAPIKey(key string) bool {
 return key == "abc123"
}

For now, we are simply going to hardcode the API key as abc123; anything else
will return false and therefore be considered invalid. Later we could modify
this function to consult a configuration file or database to check the authenticity
of a key without affecting how we use the isValidAPIKey method, or indeed the
withAPIKey wrapper.

Database session
Now that we can be sure a request has a valid API key, we must consider how
handlers will connect to the database. One option is to have each handler dial its
own connection, but this isn't very DRY (Don't Repeat Yourself), and leaves room
for potentially erroneous code, such as code that forgets to close a database session
once it is finished with it. Instead, we will create another HandlerFunc wrapper
that manages the database session for us. In main.go, add the following function:

func withData(d *mgo.Session, f http.HandlerFunc) http.HandlerFunc {
 return func(w http.ResponseWriter, r *http.Request) {
 thisDb := d.Copy()
 defer thisDb.Close()

Chapter 6

[163]

 SetVar(r, "db", thisDb.DB("ballots"))
 f(w, r)
 }
}

The withData function takes a MongoDB session representation using the mgo
package, and another handler as per the pattern. The returned http.HandlerFunc
type will copy the database session, defer the closing of that copy, and set a reference
to the ballots database as the db variable using our SetVar helper, before finally
calling the next HandlerFunc. This means that any handlers that get executed after this
one will have access to a managed database session via the GetVar function. Once the
handlers have finished executing, the deferred closing of the session will occur, which
will clean up any memory used by the request without the individual handlers having
to worry about it.

Per request variables
Our pattern allows us to very easily perform common tasks on behalf of our actual
handlers. Notice that one of the handlers is calling OpenVars and CloseVars so that
GetVar and SetVar may be used without individual handlers having to concern
themselves with setting things up and tearing them down. The function will return
an http.HandlerFunc that first calls OpenVars for the request, defers the calling of
CloseVars, and calls the specified handler function. Any handlers wrapped with
withVars will be able to use GetVar and SetVar.

Add the following code to main.go:

func withVars(fn http.HandlerFunc) http.HandlerFunc {
 return func(w http.ResponseWriter, r *http.Request) {
 OpenVars(r)
 defer CloseVars(r)
 fn(w, r)
 }
}

There are lots of other problems that can be addressed using this pattern; and
whenever you find yourself duplicating common tasks inside handlers, it's worth
considering whether a handler wrapper function could help simplify code.

Exposing Data and Functionality through a RESTful Data Web Service API

[164]

Cross-browser resource sharing
The same-origin security policy mandates that AJAX requests in web browsers be
only allowed for services hosted on the same domain, which would make our API
fairly limited since we won't be necessarily hosting all of the websites that use our
web service. The CORS technique circumnavigates the same-origin policy, allowing
us to build a service capable of serving websites hosted on other domains. To do this,
we simply have to set the Access-Control-Allow-Origin header in response to *.
While we're at it—since we're using the Location header in our create poll call—we'll
allow that header to be accessible by the client too, which can be done by listing it in
the Access-Control-Expose-Headers header. Add the following code to main.go:

func withCORS(fn http.HandlerFunc) http.HandlerFunc {
 return func(w http.ResponseWriter, r *http.Request) {
 w.Header().Set("Access-Control-Allow-Origin", "*")
 w.Header().Set("Access-Control-Expose-Headers", "Location")
 fn(w, r)
 }
}

This is the simplest wrapper function yet; it just sets the appropriate header on the
ResponseWriter type and calls the specified http.HandlerFunc type.

In this chapter, we are handling CORS explicitly so we can understand
exactly what is going on; for real production code, you should consider
employing an open source solution such as https://github.com/
fasterness/cors.

Responding
A big part of any API is responding to requests with a combination of status codes,
data, errors, and sometimes headers—the net/http package makes all of this very
easy to do. One option we have, which remains the best option for tiny projects
or even the early stages of big projects, is to just build the response code directly
inside the handler. As the number of handlers grows, however, we would end up
duplicating a lot of code and sprinkling representation decisions all over our project.
A more scalable approach is to abstract the response code into helper functions.

For the first version of our API, we are going to speak only JSON, but we want the
flexibility to add other representations later if we need to.

https://github.com/fasterness/cors
https://github.com/fasterness/cors

Chapter 6

[165]

Create a new file called respond.go, and add the following code:

func decodeBody(r *http.Request, v interface{}) error {
 defer r.Body.Close()
 return json.NewDecoder(r.Body).Decode(v)
}
func encodeBody(w http.ResponseWriter, r *http.Request, v
interface{}) error {
 return json.NewEncoder(w).Encode(v)
}

These two functions abstract the decoding and encoding of data from and to the
Request and ResponseWriter objects respectively. The decoder also closes the request
body, which is recommended. Although we haven't added much functionality here,
it means that we do not need to mention JSON anywhere else in our code, and if we
decide to add support for other representations or switch to a binary protocol instead,
we need only touch these two functions.

Next we are going to add a few more helpers that will make responding even easier.
In respond.go, add the following code:

func respond(w http.ResponseWriter, r *http.Request,
 status int, data interface{},
) {
 w.WriteHeader(status)
 if data != nil {
 encodeBody(w, r, data)
 }
}

This function makes it easy to write the status code and some data to the
ResponseWriter object using our encodeBody helper.

Handling errors is another important aspect that is worth abstracting. Add the
following respondErr helper:

func respondErr(w http.ResponseWriter, r *http.Request,
 status int, args ...interface{},
) {
 respond(w, r, status, map[string]interface{}{
 "error": map[string]interface{}{
 "message": fmt.Sprint(args...),
 },
 })
}

Exposing Data and Functionality through a RESTful Data Web Service API

[166]

This method gives us an interface similar to the respond function, but the data written
will be enveloped in an error object, to make it clear that something went wrong.
Finally, we can add an HTTP error-specific helper that will generate the correct
message for us by using the http.StatusText function from the Go standard library:

func respondHTTPErr(w http.ResponseWriter, r *http.Request,
 status int,
) {
 respondErr(w, r, status, http.StatusText(status))
}

Notice that these functions are all dogfooding, which means they use each other (as
in, eating your own dog food), which is important since we want actual responding
to only happen in one place, for if (or more likely, when) we need to make changes.

Understanding the request
The http.Request object gives us access to every piece of information we might
need about the underlying HTTP request, and therefore it is worth glancing through
the net/http documentation to really get a feel for its power. Examples include,
but are not limited to:

•	 URL, path and query string
•	 HTTP method
•	 Cookies
•	 Files
•	 Form values
•	 Referrer and user agent of requester
•	 Basic authentication details
•	 Request body
•	 Header information

There are a few things it doesn't address, which we need to either solve ourselves
or look to an external package to help us with. URL path parsing is one such
example—while we can access a path (such as /people/1/books/2) as a string
via the http.Request type's URL.Path field, there is no easy way to pull out the
data encoded in the path such as the people ID of 1, or the books ID of 2.

Chapter 6

[167]

A few projects do a good job of addressing this problem, such as Goweb
or Gorillz's mux package. They let you map path patterns that contain
placeholders for values that they then pull out of the original string and
make available to your code. For example, you can map a pattern of /
users/{userID}/comments/{commentID}, which will map paths
such as /users/1/comments/2. In your handler code, you can then
get the values by the names placed inside the curly braces, rather than
having to parse the path yourself.

Since our needs are simple, we are going to knock together a simple path-parsing
utility; we can always use a different package later if we have to, but that would
mean adding a dependency to our project.

Create a new file called path.go, and insert the following code:

package main
import (
 "strings"
)
const PathSeparator = "/"
type Path struct {
 Path string
 ID string
}
func NewPath(p string) *Path {
 var id string
 p = strings.Trim(p, PathSeparator)
 s := strings.Split(p, PathSeparator)
 if len(s) > 1 {
 id = s[len(s)-1]
 p = strings.Join(s[:len(s)-1], PathSeparator)
 }
 return &Path{Path: p, ID: id}
}
func (p *Path) HasID() bool {
 return len(p.ID) > 0
}

Exposing Data and Functionality through a RESTful Data Web Service API

[168]

This simple parser provides a NewPath function that parses the specified path string
and returns a new instance of the Path type. Leading and trailing slashes are trimmed
(using strings.Trim) and the remaining path is split (using strings.Split) by the
PathSeparator constant that is just a forward slash. If there is more than one segment
(len(s) > 1), the last one is considered to be the ID. We re-slice the slice of strings
to select the last item for the ID using s[len(s)-1], and the rest of the items for the
remainder of the path using s[:len(s)-1]. On the same lines, we also re-join the path
segments with the PathSeparator constant to form a single string containing the path
without the ID.

This supports any collection/id pair, which is all we need for our API. The
following table shows the state of the Path type for the given original path string:

Original path string Path ID HasID
/ / nil false

/people/ people nil false

/people/1/ people 1 true

A simple main function to serve our API
A web service is nothing more than a simple Go program that binds to a specific
HTTP address and port and serves requests, so we get to use all our command-line
tool-writing knowledge and techniques.

We also want to ensure that our main function is as simple and modest
as possible, which is always a goal of coding, especially in Go.

Before we write our main function, let's look at a few design goals of our
API program:

•	 We should be able to specify the HTTP address and port to which our
API listens and the address of the MongoDB instances without having
to recompile the program (through command-line flags)

•	 We want the program to gracefully shut down when we terminate it,
allowing the in-flight requests (requests that are still being processed
when the termination signal is sent to our program) to complete

•	 We want the program to log out status updates and report errors properly

Chapter 6

[169]

Atop the main.go file, replace the main function placeholder with the following code:

func main() {
 var (
 addr = flag.String("addr", ":8080", "endpoint address")
 mongo = flag.String("mongo", "localhost", "mongodb address")
)
 flag.Parse()
 log.Println("Dialing mongo", *mongo)
 db, err := mgo.Dial(*mongo)
 if err != nil {
 log.Fatalln("failed to connect to mongo:", err)
 }
 defer db.Close()
 mux := http.NewServeMux()
 mux.HandleFunc("/polls/", withCORS(withVars(withData(db,
withAPIKey(handlePolls)))))
 log.Println("Starting web server on", *addr)
 graceful.Run(*addr, 1*time.Second, mux)
 log.Println("Stopping...")
}

This function is the entirety of our API main function, and even as our API grows,
there is just a little bloat we would need to add to this.

The first thing we do is to specify two command-line flags, addr and mongo, with
some sensible defaults, and to ask the flag package to parse them. We then attempt
to dial the MongoDB database at the specified address. If we are unsuccessful, we
abort with a call to log.Fatalln. Assuming the database is running and we are able
to connect, we store the reference in the db variable before deferring the closing of
the connection. This ensures our program properly disconnects and tidies up after
itself when it ends.

We then create a new http.ServeMux object, which is a request multiplexer provided
by the Go standard library, and register a single handler for all requests that begin with
the path /polls/.

Finally, we make use of Tyler Bunnell's excellent Graceful package, which can be
found at https://github.com/stretchr/graceful to start the server. This package
allows us to specify time.Duration when running any http.Handler (such as our
ServeMux handler), which will allow any in-flight requests some time to complete
before the function exits. The Run function will block until the program is terminated
(for example, when someone presses Ctrl + C).

https://github.com/stretchr/graceful

Exposing Data and Functionality through a RESTful Data Web Service API

[170]

Using handler function wrappers
It is when we call HandleFunc on the ServeMux handler that we are making use of
our handler function wrappers, with the line:

withCORS(withVars(withData(db, withAPIKey(handlePolls)))))

Since each function takes an http.HandlerFunc type as an argument and also
returns one, we are able to chain the execution just by nesting the function calls
as we have done previously. So when a request comes in with a path prefix of /
polls/, the program will take the following execution path:

1.	 withCORS is called, which sets the appropriate header.
2.	 withVars is called, which calls OpenVars and defers CloseVars for the

request.
3.	 withData is then called, which copies the database session provided as

the first argument and defers the closing of that session.
4.	 withAPIKey is called next, which checks the request for an API key and

aborts if it's invalid, or else calls the next handler function.
5.	 handlePolls is then called, which has access to variables and a database

session, and which may use the helper functions in respond.go to write
a response to the client.

6.	 Execution goes back to withAPIKey that just exits.
7.	 Execution goes back to withData that exits, therefore calling the deferred

session Close function and clearing up the database session.
8.	 Execution goes back to withVars that exits, therefore calling CloseVars

and tidying that up too.
9.	 Execution finally goes back to withCORS that just exits.

The order that we nest the wrapper functions in is important,
because withData puts the database session for each request in
that request's variables map using SetVar. So withVars must
be outside withData. If this isn't respected, the code will likely
panic and you may want to add a check so that the panic is more
meaningful to other developers.

Chapter 6

[171]

Handling endpoints
The final piece of the puzzle is the handlePolls function that will use the helpers to
understand the incoming request and access the database, and generate a meaningful
response that will be sent back to the client. We also need to model the poll data that
we were working with in the previous chapter.

Create a new file called polls.go, and add the following code:

package main
import "gopkg.in/mgo.v2/bson"
type poll struct {
 ID bson.ObjectId `bson:"_id" json:"id"`
 Title string `json":"title""`
 Options []string `json:"options"`
 Results map[string]int `json:"results,omitempty"`
}

Here we define a structure called poll that has three fields that in turn describe
the polls being created and maintained by the code we wrote in the previous chapter.
Each field also has a tag (two in the ID case), which allows us to provide some
extra metadata.

Using tags to add metadata to structs
Tags are strings that follow a field definition within a struct type on the same
line of code. We use the back tick character to denote literal strings, which means
we are free to use double quotes within the tag string itself. The reflect package
allows us to pull out the value associated with any key; in our case, both bson and
json are examples of keys, and they are each key/value-pair-separated by a space
character. Both the encoding/json and gopkg.in/mgo.v2/bson packages allow
you to use tags to specify the field name that will be used with encoding and
decoding (along with some other properties), rather than having it infer the
values from the name of the fields themselves. We are using BSON to talk with
the MongoDB database and JSON to talk to the client, so we can actually specify
different views of the same struct type. For example, consider the ID field:

ID bson.ObjectId `bson:"_id" json:"id"`

The name of the field in Go is ID, the JSON field is id, and the BSON field is _id,
which is the special identifier field used in MongoDB.

Exposing Data and Functionality through a RESTful Data Web Service API

[172]

Many operations with a single handler
Because our simple path-parsing solution cares only about the path, we have to do
some extra work when looking at the kind of RESTful operation the client is making.
Specifically, we need to consider the HTTP method so we know how to handle the
request. For example, a GET call to our /polls/ path should read polls, where a POST
call would create a new one. Some frameworks solve this problem for you, by allowing
you to map handlers based on more than the path, such as the HTTP method or the
presence of specific headers in the request. Since our case is ultra simple, we are going
to use a simple switch case. In polls.go, add the handlePolls function:

func handlePolls(w http.ResponseWriter, r *http.Request) {
 switch r.Method {
 case "GET":
 handlePollsGet(w, r)
 return
 case "POST":
 handlePollsPost(w, r)
 return
 case "DELETE":
 handlePollsDelete(w, r)
 return
 }
 // not found
 respondHTTPErr(w, r, http.StatusNotFound)
}

We switch on the HTTP method and branch our code depending on whether it is
GET, POST, or DELETE. If the HTTP method is something else, we just respond with
a 404 http.StatusNotFound error. To make this code compile, you can add the
following function stubs underneath the handlePolls handler:

func handlePollsGet(w http.ResponseWriter, r *http.Request) {
 respondErr(w, r, http.StatusInternalServerError, errors.New("not
implemented"))
}
func handlePollsPost(w http.ResponseWriter, r *http.Request) {
 respondErr(w, r, http.StatusInternalServerError, errors.New("not
implemented"))
}
func handlePollsDelete(w http.ResponseWriter, r *http.Request) {
 respondErr(w, r, http.StatusInternalServerError, errors.New("not
implemented"))
}

Chapter 6

[173]

In this section, we learned how to manually parse elements of the
requests (the HTTP method) and make decisions in code. This is great
for simple cases, but it's worth looking at packages such as Goweb or
Gorilla's mux package for some more powerful ways of solving these
problems. Nevertheless, keeping external dependencies to a minimum
is a core philosophy of writing good and contained Go code.

Reading polls
Now it's time to implement the functionality of our web service. Inside the GET case,
add the following code:

func handlePollsGet(w http.ResponseWriter, r *http.Request) {
 db := GetVar(r, "db").(*mgo.Database)
 c := db.C("polls")
 var q *mgo.Query
 p := NewPath(r.URL.Path)
 if p.HasID() {
 // get specific poll
 q = c.FindId(bson.ObjectIdHex(p.ID))
 } else {
 // get all polls
 q = c.Find(nil)
 }
 var result []*poll
 if err := q.All(&result); err != nil {
 respondErr(w, r, http.StatusInternalServerError, err)
 return
 }
 respond(w, r, http.StatusOK, &result)
}

The very first thing we do in each of our subhandler functions is to use GetVar
to get the mgo.Database object that will allow us to interact with MongoDB. Since
this handler was nested inside both withVars and withData, we know that the
database will be available by the time execution reaches our handler. We then
use mgo to create an object referring to the polls collection in the database—if
you remember, this is where our polls live.

We then build up an mgo.Query object by parsing the path. If an ID is present, we
use the FindId method on the polls collection, otherwise we pass nil to the Find
method, which indicates that we want to select all the polls. We are converting the
ID from a string to a bson.ObjectId type with the ObjectIdHex method so that
we can refer to the polls with their numerical (hex) identifiers.

Exposing Data and Functionality through a RESTful Data Web Service API

[174]

Since the All method expects to generate a collection of poll objects, we define the
result as []*poll, or a slice of pointers to poll types. Calling the All method on
the query will cause mgo to use its connection to MongoDB to read all the polls and
populate the result object.

For small scale projects, such as a small number of polls, this approach
is fine, but as the number of polls grow, we would need to consider
paging the results or even iterating over them using the Iter method
on the query, so we do not try to load too much data into memory.

Now that we have added some functionality, let's try out our API for the first time.
If you are using the same MongoDB instance that we set up in the previous chapter,
you should already have some data in the polls collection; to see our API working
properly, you should ensure there are at least two polls in the database.

If you need to add other polls to the database, in a terminal, run the
mongo command to open a database shell that will allow you to interact
with MongoDB. Then enter the following commands to add some test
polls:
> use ballots

switched to db ballots

> db.polls.insert({"title":"Test
poll","options":["one","two","three"]})

> db.polls.insert({"title":"Test poll
two","options":["four","five","six"]})

In a terminal, navigate to your api folder, and build and run the project:
go build –o api

./api

Now make a GET request to the /polls/ endpoint by navigating in your browser
to http://localhost:8080/polls/?key=abc123; remember to include the trailing
slash. The result will be an array of polls in JSON format.

Copy and paste one of the IDs from the polls list, and insert it before the ?
character in the browser to access the data for a specific poll; for example,
http://localhost:8080/polls/5415b060a02cd4adb487c3ae?key=abc123.
Notice that instead of returning all the polls, it only returns one.

Test the API key functionality by removing or changing the key
parameter to see what the error looks like.

Chapter 6

[175]

You might have also noticed that although we are only returning a single poll, this poll
value is still nested inside an array. This is a deliberate design decision made for two
reasons: the first and most important reason is that nesting makes it easier for users
of the API to write code to consume the data. If users are always expecting a JSON
array, they can write strong types that describe that expectation, rather than having
one type for single polls and another for collections of polls. As an API designer, this
is your decision to make. The second reason we left the object nested in an array is that
it makes the API code simpler, allowing us to just change the mgo.Query object and to
leave the rest of the code the same.

Creating a poll
Clients should be able to make a POST request to /polls/ to create a poll. Let's add
the following code inside the POST case:

func handlePollsPost(w http.ResponseWriter, r *http.Request) {
 db := GetVar(r, "db").(*mgo.Database)
 c := db.C("polls")
 var p poll
 if err := decodeBody(r, &p); err != nil {
 respondErr(w, r, http.StatusBadRequest, "failed to read poll
from request", err)
 return
 }
 p.ID = bson.NewObjectId()
 if err := c.Insert(p); err != nil {
 respondErr(w, r, http.StatusInternalServerError, "failed to
insert poll", err)
 return
 }
 w.Header().Set("Location", "polls/"+p.ID.Hex())
 respond(w, r, http.StatusCreated, nil)
}

Here we first attempt to decode the body of the request that, according to RESTful
principles, should contain a representation of the poll object the client wants to
create. If an error occurs, we use the respondErr helper to write the error to the user,
and immediately return the function. We then generate a new unique ID for the poll,
and use the mgo package's Insert method to send it into the database. As per HTTP
standards, we then set the Location header of the response and respond with a 201
http.StatusCreated message, pointing to the URL from which the newly created
poll maybe accessed.

Exposing Data and Functionality through a RESTful Data Web Service API

[176]

Deleting a poll
The final piece of functionality we are going to include in our API is the capability
to delete polls. By making a request with the DELETE HTTP method to the URL of a
poll (such as /polls/5415b060a02cd4adb487c3ae), we want to be able to remove
the poll from the database and return a 200 Success response:

func handlePollsDelete(w http.ResponseWriter, r *http.Request) {
 db := GetVar(r, "db").(*mgo.Database)
 c := db.C("polls")
 p := NewPath(r.URL.Path)
 if !p.HasID() {
 respondErr(w, r, http.StatusMethodNotAllowed, "Cannot delete
all polls.")
 return
 }
 if err := c.RemoveId(bson.ObjectIdHex(p.ID)); err != nil {
 respondErr(w, r, http.StatusInternalServerError, "failed to
delete poll", err)
 return
 }
 respond(w, r, http.StatusOK, nil) // ok
}

Similar to the GET case, we parse the path, but this time we respond with an error if
the path does not contain an ID. For now, we don't want people to be able to delete
all polls with one request, and so use the suitable StatusMethodNotAllowed code.
Then, using the same collection we used in the previous cases, we call RemoveId,
passing in the ID in the path after converting it into a bson.ObjectId type. Assuming
things go well, we respond with an http.StatusOK message, with no body.

CORS support
In order for our DELETE capability to work over CORS, we must do a little extra
work to support the way CORS browsers handle some HTTP methods such as
DELETE. A CORS browser will actually send a pre-flight request (with an HTTP
method of OPTIONS) asking for permission to make a DELETE request (listed in the
Access-Control-Request-Method request header), and the API must respond
appropriately in order for the request to work. Add another case in the switch
statement for OPTIONS:

case "OPTIONS":
 w.Header().Add("Access-Control-Allow-Methods", "DELETE")
 respond(w, r, http.StatusOK, nil)
 return

Chapter 6

[177]

If the browser asks for permission to send a DELETE request, the API will respond
by setting the Access-Control-Allow-Methods header to DELETE, thus overriding
the default * value that we set in our withCORS wrapper handler. In the real world,
the value for the Access-Control-Allow-Methods header will change in response
to the request made, but since DELETE is the only case we are supporting, we can
hardcode it for now.

The details of CORS are out of the scope of this book, but it is
recommended that you research the particulars online if you intend
to build truly accessible web services and APIs. Head over to
http://enable-cors.org/ to get started.

Testing our API using curl
curl is a command-line tool that allows us to make HTTP requests to our service so
that we can access it as though we were a real app or client consuming the service.

Windows users do not have access to curl by default, and will
need to seek an alternative. Check out http://curl.haxx.se/
dlwiz/?type=bin or search the Web for "Windows curl alternative".

In a terminal, let's read all the polls in the database through our API. Navigate to
your api folder and build and run the project, and also ensure MongoDB is running:

go build –o api

./api

We then perform the following steps:

1.	 Enter the following curl command that uses the -X flag to denote we want
to make a GET request to the specified URL:
curl -X GET http://localhost:8080/polls/?key=abc123

2.	 The output is printed after you hit Enter:
[{"id":"541727b08ea48e5e5d5bb189","title":"Best
Beatle?","options":["john","paul","george","ringo"]},{"id":"54
1728728ea48e5e5d5bb18a","title":"Favorite
language?","options":["go","java","javascript","ruby"]}]

3.	 While it isn't pretty, you can see that the API returns the polls from your
database. Issue the following command to create a new poll:
curl --data '{"title":"test","options":["one","two","three"]}'
-X POST http://localhost:8080/polls/?key=abc123

http://enable-cors.org/
http://curl.haxx.se/dlwiz/?type=bin
http://curl.haxx.se/dlwiz/?type=bin

Exposing Data and Functionality through a RESTful Data Web Service API

[178]

4.	 Get the list again to see the new poll included:
curl -X GET http://localhost:8080/polls/?key=abc123

5.	 Copy and paste one of the IDs, and adjust the URL to refer specifically to
that poll:
curl -X GET
http://localhost:8080/polls/541727b08ea48e5e5d5bb189?key=abc12
3

[{"id":"541727b08ea48e5e5d5bb189",","title":"Best
Beatle?","options":["john","paul","george","ringo"]}]

6.	 Now we see only the selected poll, Best Beatle. Let's make a DELETE
request to remove the poll:
curl -X DELETE
http://localhost:8080/polls/541727b08ea48e5e5d5bb189?key=abc12
3

7.	 Now when we get all the polls again, we'll see that the Best Beatle poll
has gone:

curl -X GET http://localhost:8080/polls/?key=abc123

[{"id":"541728728ea48e5e5d5bb18a","title":"Favorite
language?","options":["go","java","javascript","ruby"]}]

So now that we know that our API is working as expected, it's time to build
something that consumes the API properly.

A web client that consumes the API
We are going to put together an ultra-simple web client that consumes the
capabilities and data exposed through our API, allowing users to interact with
the polling system we built in the previous chapter and earlier in this chapter.
Our client will be made up of three web pages:

•	 An index.html page that shows all the polls
•	 A view.html page that shows the results of a specific poll
•	 A new.html page that allows users to create new polls

Create a new folder called web alongside the api folder, and add the following
content to the main.go file:

package main

Chapter 6

[179]

import (
 "flag"
 "log"
 "net/http"
)
func main() {
 var addr = flag.String("addr", ":8081", "website address")
 flag.Parse()
 mux := http.NewServeMux()
 mux.Handle("/", http.StripPrefix("/",
 http.FileServer(http.Dir("public"))))
 log.Println("Serving website at:", *addr)
 http.ListenAndServe(*addr, mux)
}

These few lines of Go code really highlight the beauty of the language and the Go
standard library. They represent a complete, highly scalable, static website hosting
program. The program takes an addr flag and uses the familiar http.ServeMux
type to serve static files from a folder called public.

Building the next few pages—while we're building the UI—consists
of writing a lot of HTML and JavaScript code. Since this is not Go
code, if you'd rather not type it all out, feel free to head over to
the GitHub repository for this book and copy and paste it from
https://github.com/matryer/goblueprints.

An index page showing a list of polls
Create the public folder inside web and add the index.html file after writing the
following HTML code in it:

<!DOCTYPE html>
<html>
<head>
 <title>Polls</title>
 <link rel="stylesheet"
 href="//maxcdn.bootstrapcdn.com/bootstrap/3.2.0/css/
 bootstrap.min.css">
</head>
<body>
</body>
</html>

https://github.com/matryer/goblueprints

Exposing Data and Functionality through a RESTful Data Web Service API

[180]

We will use Bootstrap again to make our simple UI look nice, but we need to add
two additional sections to the body tag of the HTML page. First, add the DOM
elements that will display the list of polls:

<div class="container">
 <div class="col-md-4"></div>
 <div class="col-md-4">
 <h1>Polls</h1>
 <ul id="polls">
 Create new poll
 </div>
 <div class="col-md-4"></div>
</div>

Here we are using Bootstrap's grid system to center-align our content that is made
up of a list of polls and a link to new.html, where users can create new polls.

Next, add the following script tags and JavaScript underneath the previous code:

<script
src="//ajax.googleapis.com/ajax/libs/jquery/2.1.1/jquery.min.js"><
/script>
<script
src="//maxcdn.bootstrapcdn.com/bootstrap/3.2.0/js/bootstrap.min.js
"></script>
<script>
 $(function(){
 var update = function(){
 $.get("http://localhost:8080/polls/?key=abc123", null, null,
"json")
 .done(function(polls){
 $("#polls").empty();
 for (var p in polls) {
 var poll = polls[p];
 $("#polls").append(
 $("").append(
 $("<a>")
 .attr("href", "view.html?poll=polls/" + poll.id)
 .text(poll.title)
)
)
 }
 }
);

Chapter 6

[181]

 window.setTimeout(update, 10000);
 }
 update();
 });
</script>

We are using jQuery's $.get function to make an AJAX request to our web service.
We are also hardcoding the API URL. In practice, you might decide against this, but
you should at least use a domain name to abstract it. Once the polls have loaded,
we use jQuery to build up a list containing hyperlinks to the view.html page,
passing the ID of the poll as a query parameter.

A page to create a new poll
To allow users to create a new poll, create a file called new.html inside the public
folder, and add the following HTML code to the file:

<!DOCTYPE html>
<html>
<head>
 <title>Create Poll</title>
 <link rel="stylesheet"
 href="//maxcdn.bootstrapcdn.com/bootstrap/3.2.0/css/
 bootstrap.min.css">
</head>
<body>
 <script
src="//ajax.googleapis.com/ajax/libs/jquery/2.1.1/jquery.min.js"><
/script>
 <script
src="//maxcdn.bootstrapcdn.com/bootstrap/3.2.0/js/bootstrap.min.js
"></script>
</body>
</html>

We are going to add the elements for an HTML form that will capture the information
we need when creating a new poll, namely the title of the poll and the options. Add the
following code inside the body tags:

<div class="container">
 <div class="col-md-4"></div>
 <form id="poll" role="form" class="col-md-4">
 <h2>Create Poll</h2>
 <div class="form-group">
 <label for="title">Title</label>

Exposing Data and Functionality through a RESTful Data Web Service API

[182]

 <input type="text" class="form-control" id="title"
placeholder="Title">
 </div>
 <div class="form-group">
 <label for="options">Options</label>
 <input type="text" class="form-control" id="options"
placeholder="Options">
 <p class="help-block">Comma separated</p>
 </div>
 <button type="submit" class="btn btn-primary">Create
Poll</button> or cancel
 </form>
 <div class="col-md-4"></div>
</div>

Since our API speaks JSON, we need to do a bit of work to turn the HTML form into
a JSON-encoded string, and also break the comma-separated options string into an
array of options. Add the following script tag:

<script>
 $(function(){
 var form = $("form#poll");
 form.submit(function(e){
 e.preventDefault();
 var title = form.find("input[id='title']").val();
 var options = form.find("input[id='options']").val();
 options = options.split(",");
 for (var opt in options) {
 options[opt] = options[opt].trim();
 }
 $.post("http://localhost:8080/polls/?key=abc123",
 JSON.stringify({
 title: title, options: options
 })
).done(function(d, s, r){
 location.href = "view.html?poll=" +
r.getResponseHeader("Location");
 });
 });
 });
</script>

Chapter 6

[183]

Here we add a listener to the submit event of our form, and use jQuery's val method
to collect the input values. We split the options with a comma, and trim the spaces
away before using the $.post method to make the POST request to the appropriate
API endpoint. JSON.stringify allows us to turn the data object into a JSON string,
and we use that string as the body of the request, as expected by the API. On success,
we pull out the Location header and redirect the user to the view.html page,
passing a reference to the newly created poll as the parameter.

A page to show details of the poll
The final page of our app we need to complete is the view.html page where users
can see the details and live results of the poll. Create a new file called view.html
inside the public folder, and add the following HTML code to it:

<!DOCTYPE html>
<html>
<head>
 <title>View Poll</title>
 <link rel="stylesheet"
href="//maxcdn.bootstrapcdn.com/bootstrap/3.2.0/css/bootstrap.min.
css">
</head>
<body>
 <div class="container">
 <div class="col-md-4"></div>
 <div class="col-md-4">
 <h1 data-field="title">...</h1>
 <ul id="options">
 <div id="chart"></div>
 <div>
 <button class="btn btn-sm" id="delete">Delete this
poll</button>
 </div>
 </div>
 <div class="col-md-4"></div>
 </div>
</body>
</html>

Exposing Data and Functionality through a RESTful Data Web Service API

[184]

This page is mostly similar to the other pages; it contains elements for presenting
the title of the poll, the options, and a pie chart. We will be mashing up Google's
Visualization API with our API to present the results. Underneath the final div tag in
view.html (and above the closing body tag), add the following script tags:

<script src="//www.google.com/jsapi"></script>
<script
src="//ajax.googleapis.com/ajax/libs/jquery/2.1.1/jquery.min.js"><
/script>
<script
src="//maxcdn.bootstrapcdn.com/bootstrap/3.2.0/js/bootstrap.min.js
"></script>
<script>
google.load('visualization', '1.0', {'packages':['corechart']});
google.setOnLoadCallback(function(){
 $(function(){
 var chart;
 var poll = location.href.split("poll=")[1];
 var update = function(){
 $.get("http://localhost:8080/"+poll+"?key=abc123", null,
null, "json")
 .done(function(polls){
 var poll = polls[0];
 $('[data-field="title"]').text(poll.title);
 $("#options").empty();
 for (var o in poll.results) {
 $("#options").append(
 $("").append(
 $("<small>").addClass("label label-
default").text(poll.results[o]),
 " ", o
)
)
 }
 if (poll.results) {
 var data = new google.visualization.DataTable();
 data.addColumn("string","Option");
 data.addColumn("number","Votes");
 for (var o in poll.results) {
 data.addRow([o, poll.results[o]])
 }
 if (!chart) {
 chart = new
google.visualization.PieChart(document.getElementById('chart'));
 }

Chapter 6

[185]

 chart.draw(data, {is3D: true});
 }
 }
);
 window.setTimeout(update, 1000);
 };
 update();
 $("#delete").click(function(){
 if (confirm("Sure?")) {
 $.ajax({
 url:"http://localhost:8080/"+poll+"?key=abc123",
 type:"DELETE"
 })
 .done(function(){
 location.href = "/";
 })
 }
 });
 });
});
</script>

We include the dependencies we will need to power our page, jQuery and Bootstrap,
and also the Google JavaScript API. The code loads the appropriate visualization
libraries from Google, and waits for the DOM elements to load before extracting
the poll ID from the URL by splitting it on poll=. We then create a variable called
update that represents a function responsible for generating the view of the page.
This approach is taken to make it easy for us to use window.setTimeout to issue
regular calls to update the view. Inside the update function, we use $.get to make
a GET request to our /polls/{id} endpoint, replacing {id} with the actual ID
we extracted from the URL earlier. Once the poll has loaded, we update the title
on the page and iterate over the options to add them to the list. If there are results
(remember in the previous chapter, the results map was only added to the data
as votes start being counted), we create a new google.visualization.PieChart
object and build a google.visualization.DataTable object containing the results.
Calling draw on the chart causes it to render the data, and thus update the chart
with the latest numbers. We then use setTimeout to tell our code to call update
again in another second.

Finally, we bind to the click event of the delete button we added to our page,
and after asking the user if they are sure, make a DELETE request to the polls URL
and then redirect them back to the home page. It is this request that will actually
cause the OPTIONS request to be made first, asking for permission, which is why
we added explicit support for it in our handlePolls function earlier.

Exposing Data and Functionality through a RESTful Data Web Service API

[186]

Running the solution
We have built many components over the last two chapters, and it is now time to
see them all working together. This section contains everything you need to get all the
items running, assuming you have the environment set up properly as described at
the beginning of the previous chapter. This section assumes you have a single folder
that contains four subfolders: api, counter, twittervotes, and web.

Assuming nothing is running, take the following steps (each step in its own
terminal window):

1.	 In the top-level folder, start the nsqlookupd daemon:
nsqlookupd

2.	 In the same directory, start the nsqd daemon:
nsqd --lookupd-tcp-address=localhost:4160

3.	 Start the MongoDB daemon:
mongod

4.	 Navigate to the counter folder and build and run it:
cd counter

go build –o counter

./counter

5.	 Navigate to the twittervotes folder and build and run it. Be sure that
you have the appropriate environment variables set, otherwise you will
see errors when you run the program:
cd ../twittervotes

go build –o twittervotes

./twittervotes

6.	 Navigate to the api folder and build and run it:
cd ../api

go build –o api

./api

7.	 Navigate to the web folder and build and run it:

cd ../web

go build –o web

./web

Chapter 6

[187]

Now that everything is running, open a browser and head to http://
localhost:8081/. Using the user interface, create a poll called Moods and
input the options as happy,sad,fail,and success. These are common
enough words that we are likely to see some relevant activity on Twitter.

Once you have created your poll, you will be taken to the view page where you
will start to see the results coming in. Wait for a few seconds, and enjoy the fruits
of your hard work as the UI updates in real time showing live, real-time results.

Summary
In this chapter, we exposed the data for our social polling solution through a highly
scalable RESTful API and built a simple website that consumes the API to provide
an intuitive way for users to interact with it. The website consists of static content
only, with no server-side processing (since the API does the heavy lifting for us).
This allows us to host the website very cheaply on static hosting sites such as
bitballoon.com, or to distribute the files to content delivery networks.

Within our API service, we learned how to share data between handlers without
breaking or obfuscating the handler pattern from the standard library. We also
saw how writing wrapped handler functions allows us to build a pipeline of
functionality in a very simple and intuitive way.

bitballoon.com

Exposing Data and Functionality through a RESTful Data Web Service API

[188]

We wrote some basic encoding and decoding functions that—while only simply
wrapping their counterparts from the encoding/json package for now—could be
improved later to support a range of different data representations without changing
the internal interface to our code. We wrote a few simple helper functions that make
responding to data requests easy, while providing the same kind of abstraction that
would allow us to evolve our API later.

We saw how, for simple cases, switching on to HTTP methods is an elegant way
to support many functions for a single endpoint. We also saw how, with a few extra
lines of code, we are able to build in support for CORS to allow applications running
on different domains to interact with our services—without the need for hacks
like JSONP.

The code in this chapter, combined with the work we did in the previous chapter,
provides a real-world, production-ready solution that implements the following flow:

1.	 The user clicks on the Create Poll button on the website, and enters the
title and options for a poll.

2.	 The JavaScript running in the browser encodes the data as a JSON string
and sends it in the body of a POST request to our API.

3.	 The API receives the request, and after validating the API key, setting
up a database session, and storing it in our variables map, calls the
handlePolls function that processes the request and stores the new
poll in the MongoDB database.

4.	 The API redirects the user to the view.html page for the newly created poll.
5.	 Meanwhile, the twittervotes program loads all polls from the database,

including the new one, and opens a connection to Twitter filtering on the
hashtags that represent options from the polls.

6.	 As votes come in, twittervotes pushes them to NSQ.
7.	 The counter program is listening in on the appropriate channel and notices

the votes coming in, counting each one and periodically making updates
to the database.

8.	 The user sees the results displayed (and refreshed) on the view.html page
as the website continually makes GET requests to the API endpoint for the
selected poll.

In the next chapter, we will evolve our API and web skills to build a brand new
start-up app called Meander. We'll see how we can write a full, static web server
in just a few lines of Go code, and explore an interesting way of representing
enumerators in a language that doesn't officially support them!

Random Recommendations
Web Service

The concept behind the project that we will build in this chapter is a simple one:
we want users to be able to generate random recommendations for things to do in
specific geographical locations based on a predefined set of journey types that we
will expose through the API. We will give our project the codename Meander.

Often on projects in the real world, you are responsible for the full stack; somebody
else builds the website, a different person still might write the iOS app, and maybe
an outsourced company builds the desktop version. On more successful API projects,
you might not even know who the consumers of your API are, especially if it's a
public API.

In this chapter, we will simulate this reality by designing and agreeing a minimal
API design with a fictional partner up front before going on to implement the API.
Once we have finished our side of the project, we will download a user interface
built by our teammates to see the two work together to produce the final application.

In this chapter, you will:

•	 Learn to express the general goals of a project using short and simple
Agile user stories

•	 Discover that you can agree a meeting point in a project by agreeing on
the design of an API, which allows many people to work in parallel

•	 See how early versions of code can actually have data fixtures written
in code and compiled into the program, allowing us to change the
implementation later without touching the interface

•	 Learn a strategy that allows structs (and other types) to represent
a public version of themselves for cases when we want to hide or
transform internal representations

Random Recommendations Web Service

[190]

•	 Learn to use embedded structs to represent nested data, while keeping
the interface of our types simple

•	 Learn to use http.Get to make external API requests, specifically to the
Google Places API, with no code bloat

•	 Learn to effectively implement enumerators in Go, even though they
aren't really a language feature

•	 Experience a real-world example of TDD
•	 See how the math/rand package makes it easy to select an item from a

slice at random
•	 Learn an easy way to grab data from the URL parameters of the http.

Request type

Project overview
Following Agile methodologies, let's write two user stories that describe the
functionality of our project. User stories shouldn't be comprehensive documents
describing the entire set of features of an application; rather small cards are perfect
for not only describing what the user is trying to do, but why. Also, we should
do this without trying to design the whole system up front or delve too deep into
implementation details.

First we need a story about seeing the different journey types from which our
users may select:

As a traveler
I want to see the different types of journeys I can get recommendations for
So that I can decide what kind of evening to take my partner on

Secondly, we need a story about providing random recommendations for a
selected journey type:

As a traveler
I want to see a random recommendation for my selected journey type
So that I know where to go, and what the evening will entail

Chapter 7

[191]

These two stories represent the two core capabilities that our API needs to provide,
and actually ends up representing two endpoints.

In order to discover places around specified locations, we are going to make use of
the Google Places API, which allows us to search for listings of businesses with given
types, such as bar, café, or movie_theater. We will then use Go's math/rand package
to pick from those places at random, building up a complete journey for our users.

The Google Places API supports many business types;
see https://developers.google.com/places/
documentation/supported_types for the complete list.

Project design specifics
In order to turn our stories into an interactive application, we are going to provide
two JSON endpoints; one to deliver the kinds of journeys users will be able to select
in the application, and another to actually generate the random recommendations
for the selected journey type.

GET /journeys

The above call should return a list such as the following:

[
 {
 name: "Romantic",
 journey: "park|bar|movie_theater|restaurant|florist"
 },
 {
 name: "Shopping",
 journey: "department_store|clothing_store|jewelry_store"
 }
]

The name field is a human-readable label for the type of recommendations the app
generates, and the journey field is a pipe-separated list of supported journey types.
It is the journey value that we will pass, as a URL parameter, into our other endpoint,
which generates the actual recommendations:

GET /recommendations?
 lat=1&lng=2&journey=bar|cafe&radius=10&cost=$...$$$$$

https://developers.google.com/places/documentation/supported_types
https://developers.google.com/places/documentation/supported_types

Random Recommendations Web Service

[192]

This endpoint is responsible for querying the Google Places API and generating
the recommendations before returning an array of place objects. We will use the
parameters in the URL to control the kind of query to make as per the HTTP
specification. The lat and lng parameters, representing latitude and longitude,
respectively, tell our API where in the world we want recommendations from, and
the radius parameter represents the distance in meters around the point in which
we are interested in. The cost value is a human-readable way of representing the
price range for places that the API returns. It is made up of two values: a lower and
upper range separated by three dots. The number of dollar characters represents
the price level, with $ being the most affordable and $$$$$ being the most expensive.
Using this pattern, a value of $...$$ would represent very low cost recommendations,
where $$$$...$$$$$ would represent a pretty expensive experience.

Some programmers might insist the cost range is represented by
numerical values, but since our API is going to be consumed by
people, why not make things a little more interesting?

An example payload for this call might look something like this:

[
 {
 icon: "http://maps.gstatic.com/mapfiles/place_api/icons/cafe-
71.png",
 lat: 51.519583, lng: -0.146251,
 vicinity: "63 New Cavendish St, London",
 name: "Asia House",
 photos: [{
 url:
"https://maps.googleapis.com/maps/api/place/photo?maxwidth=400&pho
toreference=CnRnAAAAyLRN"
 }]
 }, ...
]

The array returned contains a place object representing a random recommendation
for each segment in the journey, in the appropriate order. The preceding example is
a café in London. The data fields are fairly self-explanatory; the lat and lng fields
represent the location of the place (they're short for latitude and longitude), the name
and vicinity fields tell us what and where the business is, and the photos array
gives us a list of relevant photographs from Google's servers. The vicinity and
icon fields will help us deliver a richer experience to our users.

Chapter 7

[193]

Representing data in code
We are first going to expose the journeys that users can select from, so create a new
folder called meander in GOPATH, and add the following journeys.go code:

package meander
type j struct {
 Name string
 PlaceTypes []string
}
var Journeys = []interface{}{
 &j{Name: "Romantic", PlaceTypes: []string{"park", "bar",
"movie_theater", "restaurant", "florist", "taxi_stand"}},
 &j{Name: "Shopping", PlaceTypes: []string{"department_store",
"cafe", "clothing_store", "jewelry_store", "shoe_store"}},
 &j{Name: "Night Out", PlaceTypes: []string{"bar", "casino",
"food", "bar", "night_club", "bar", "bar", "hospital"}},
 &j{Name: "Culture", PlaceTypes: []string{"museum", "cafe",
"cemetery", "library", "art_gallery"}},
 &j{Name: "Pamper", PlaceTypes: []string{"hair_care",
"beauty_salon", "cafe", "spa"}},
}

Here we define an internal type called j inside the meander package, which
we then use to describe the journeys by creating instances of them inside the
Journeys slice. This approach is an ultra-simple way of representing data in
the code, without building in a dependency on an external data store.

As an additional assignment, why not see if you can keep golint
happy throughout this process? Every time you add some code, run
golint for the packages and satisfy any suggestions that emerge. It
cares a lot about exported items having no documentation, so adding
simple comments in the correct format will keep it happy. To learn
more about golint, see https://github.com/golang/lint.

Of course, this would likely evolve into just that later, maybe even with the ability
for users to create and share their own journeys. Since we are exposing our data
via an API, we are free to change the internal implementation without affecting
the interface, so this approach is great for a version 1.0.

We are using a slice of type []interface{} because we will
later implement a general way of exposing public data regardless
of actual types.

https://github.com/golang/lint

Random Recommendations Web Service

[194]

A romantic journey consists of a visit first to a park, then a bar, a movie theater,
then a restaurant, before a visit to a florist, and finally a taxi ride home; you get the
general idea. Feel free to get creative and add others by consulting the supported
types in the Google Places API.

You might have noticed that since we are containing our code inside a package
called meander (rather than main), our code can never be run as a tool like the other
APIs we have written so far. Create a new folder called cmd inside meander; this will
house the actual command-line tool that exposes the meander package's capabilities
via an HTTP endpoint.

Inside the cmd folder, add the following code to the main.go file:

package main
func main() {
 runtime.GOMAXPROCS(runtime.NumCPU())
 //meander.APIKey = "TODO"
 http.HandleFunc("/journeys", func(w http.ResponseWriter, r
*http.Request) {
 respond(w, r, meander.Journeys)
 })
 http.ListenAndServe(":8080", http.DefaultServeMux)
}
func respond(w http.ResponseWriter, r *http.Request, data
[]interface{}) error {
 return json.NewEncoder(w).Encode(data)
}

You will recognize this as a simple API endpoint program, mapping to the /
journeys endpoint.

You'll have to import the encoding/json, net/http, and runtime
packages, along with the meander package you created earlier.

The runtime.GOMAXPROCS call sets the maximum number of CPUs that our program
can use, and we tell it to use them all. We then set the value of APIKey in the meander
package (which is commented out for now, since we have yet to implement it)
before calling the familiar HandleFunc function on the net/http package to bind
our endpoint, which then just responds with the meander.Journeys variable. We
borrow the abstract responding concept from the previous chapter by providing a
respond function that encodes the specified data to the http.ResponseWriter type.

Chapter 7

[195]

Let's run our API program by navigating to the cmd folder in a terminal and using go
run. We don't need to build this into an executable file at this stage since it's just
a single file:

go run main.go

Hit the http://localhost:8080/journeys endpoint, and notice that our Journeys
data payload is served, which looks like this:

[{
 Name: "Romantic",
 PlaceTypes: [
 "park",
 "bar",
 "movie_theater",
 "restaurant",
 "florist",
 "taxi_stand"
]
}]

This is perfectly acceptable, but there is one major flaw: it exposes internals about
our implementation. If we changed the PlaceTypes field name to Types, our API
would change and it's important that we avoid this.

Projects evolve and change over time, especially successful ones, and as developers
we should do what we can to protect our customers from the impact of the evolution.
Abstracting interfaces is a great way to do this, as is taking ownership of the
public-facing view of our data objects.

Public views of Go structs
In order to control the public view of structs in Go, we need to invent a way to
allow individual journey types to tell us how they want to be exposed. In the
meander folder, create a new file called public.go, and add the following code:

package meander
type Facade interface {
 Public() interface{}
}
func Public(o interface{}) interface{} {
 if p, ok := o.(Facade); ok {
 return p.Public()
 }
 return o
}

Random Recommendations Web Service

[196]

The Facade interface exposes a single Public method, which will return the public
view of a struct. The Public function takes any object and checks to see whether it
implements the Facade interface (does it have a Public() interface{} method?);
and if it is implemented, calls the method and returns the result—otherwise it just
returns the original object untouched. This allows us to pass anything through the
Public function before writing the result to the ResponseWriter object, allowing
individual structs to control their public appearance.

Let's implement a Public method for our j type by adding the following code to
journeys.go:

func (j *j) Public() interface{} {
 return map[string]interface{}{
 "name": j.Name,
 "journey": strings.Join(j.PlaceTypes, "|"),
 }
}

The public view of our j type joins the PlaceTypes field into a single string
separated by the pipe character, as per our API design.

Head back to cmd/main.go and replace the respond method with one that makes
use of our new Public function:

func respond(w http.ResponseWriter, r *http.Request, data []
interface{}) error {
 publicData := make([]interface{}, len(data))
 for i, d := range data {
 publicData[i] = meander.Public(d)
 }
 return json.NewEncoder(w).Encode(publicData)
}

Here we iterate over the data slice calling the meander.Public function for each
item, building the results into a new slice of the same size. In the case of our j type,
its Public method will be called to serve the public view of the data, rather than the
default view. In a terminal, navigate to the cmd folder again and run go run main.
go before hitting http://localhost:8080/journeys again. Notice that the same
data has now changed to a new structure:

[{
 journey: "park|bar|movie_theater|restaurant|florist|taxi_stand",
 name: "Romantic"
}, ...]

Chapter 7

[197]

Generating random recommendations
In order to obtain the places from which our code will randomly build up
recommendations, we need to query the Google Places API. In the meander
folder, add the following query.go file:

package meander
type Place struct {
 *googleGeometry `json:"geometry"`
 Name string `json:"name"`
 Icon string `json:"icon"`
 Photos []*googlePhoto `json:"photos"`
 Vicinity string `json:"vicinity"`
}
type googleResponse struct {
 Results []*Place `json:"results"`
}
type googleGeometry struct {
 *googleLocation `json:"location"`
}
type googleLocation struct {
 Lat float64 `json:"lat"`
 Lng float64 `json:"lng"`
}
type googlePhoto struct {
 PhotoRef string `json:"photo_reference"`
 URL string `json:"url"`
}

This code defines the structures we will need to parse the JSON response from the
Google Places API into usable objects.

Head over to the Google Places API documentation for an example of
the response we are expecting. See http://developers.google.
com/places/documentation/search.

Most of the preceding code will be obvious, but it's worth noticing that the Place
type embeds the googleGeometry type, which allows us to represent the nested
data as per the API, while essentially flattening it in our code. We do the same
with googleLocation inside googleGeometry, which means that we will be able
to access the Lat and Lng values directly on a Place object, even though they're
technically nested in other structures.

http://developers.google.com/places/documentation/search
http://developers.google.com/places/documentation/search

Random Recommendations Web Service

[198]

Because we want to control how a Place object appears publically, let's give this
type the following Public method:

func (p *Place) Public() interface{} {
 return map[string]interface{}{
 "name": p.Name,
 "icon": p.Icon,
 "photos": p.Photos,
 "vicinity": p.Vicinity,
 "lat": p.Lat,
 "lng": p.Lng,
 }
}

Remember to run golint on this code to see which comments need
to be added to the exported items.

Google Places API key
Like with most APIs, we will need an API key in order to access the remote services.
Head over to the Google APIs Console, sign in with a Google account, and create a
key for the Google Places API. For more detailed instructions, see the documentation
on Google's developer website.

Once you have your key, let's make a variable inside the meander package that can
hold it. At the top of query.go, add the following definition:

var APIKey string

Now nip back into main.go, remove the double slash // from the APIKey line, and
replace the TODO value with the actual key provided by the Google APIs console.

Enumerators in Go
To handle the various cost ranges for our API, it makes sense to use an enumerator
(or enum) to denote the various values and to handle conversions to and from string
representations. Go doesn't explicitly provide enumerators, but there is a neat way
of implementing them, which we will explore in this section.

Chapter 7

[199]

A simple flexible checklist for writing enumerators in Go is:

•	 Define a new type, based on a primitive integer type
•	 Use that type whenever you need users to specify one of the

appropriate values
•	 Use the iota keyword to set the values in a const block, disregarding

the first zero value
•	 Implement a map of sensible string representations to the values of

your enumerator
•	 Implement a String method on the type that returns the appropriate

string representation from the map
•	 Implement a ParseType function that converts from a string to your type

using the map

Now we will write an enumerator to represent the cost levels in our API. Create a new
file called cost_level.go inside the meander folder and add the following code:

package meander
type Cost int8
const (
 _ Cost = iota
 Cost1
 Cost2
 Cost3
 Cost4
 Cost5
)

Here we define the type of our enumerator, which we have called Cost, and since
we only need to represent a few values, we have based it on an int8 range. For
enumerators where we need larger values, you are free to use any of the integer
types that work with iota. The Cost type is now a real type in its own right, and
we can use it wherever we need to represent one of the supported values—for
example, we can specify a Cost type as an argument in functions, or use it as the
type for a field in a struct.

We then define a list of constants of that type, and use the iota keyword to indicate
that we want incrementing values for the constants. By disregarding the first iota
value (which is always zero), we indicate that one of the specified constants must
be explicitly used, rather than the zero value.

Random Recommendations Web Service

[200]

To provide a string representation of our enumerator, we need only add a String
method to the Cost type. This is a useful exercise even if you don't need to use the
strings in your code, because whenever you use the print calls from the Go standard
library (such as fmt.Println), the numerical values will be used by default. Often
those values are meaningless and will require you to look them up, and even count
the lines to determine the numerical value for each item.

For more information about the String() method in Go, see
the Stringer and GoStringer interfaces in the fmt package
at http://golang.org/pkg/fmt/#Stringer.

Test-driven enumerator
To be sure that our enumerator code is working correctly, we are going to write
unit tests that make some assertions about expected behavior.

Alongside cost_level.go, add a new file called cost_level_test.go, and add
the following unit test:

package meander_test
import (
 "testing"
 "github.com/cheekybits/is"
 "path/to/meander"
)
func TestCostValues(t *testing.T) {
 is := is.New(t)
 is.Equal(int(meander.Cost1), 1)
 is.Equal(int(meander.Cost2), 2)
 is.Equal(int(meander.Cost3), 3)
 is.Equal(int(meander.Cost4), 4)
 is.Equal(int(meander.Cost5), 5)
}

You will need to run go get to get the CheekyBits' is package (from github.com/
cheekybits/is).

The is package is an alternative testing helper package, but this one is
ultra-simple and deliberately bare-bones. You get to pick your favorite
when you write your own projects.

http://golang.org/pkg/fmt/#Stringer
github.com/cheekybits/is
github.com/cheekybits/is

Chapter 7

[201]

Normally, we wouldn't worry about the actual integer value of constants in our
enumerator, but since the Google Places API uses numerical values to represent
the same thing, we need to care about the values.

You might have noticed something strange about this test file that
breaks from convention. Although it is inside the meander folder, it
is not a part of the meander package; rather it's in meander_test.
In Go, this is an error in every case except for tests. Because we are
putting our test code into its own package, it means that we no longer
have access to the internals of the meander package—notice how we
have to use the package prefix. This may seem like a disadvantage,
but in fact it allows us to be sure that we are testing the package as
though we were a real user of it. We may only call exported methods
and only have visibility into exported types; just like our users.

Run the tests by running go test in a terminal, and notice that it passes.

Let's add another test to make assertions about the string representations for each
Cost constant. In cost_level_test.go, add the following unit test:

func TestCostString(t *testing.T) {
 is := is.New(t)
 is.Equal(meander.Cost1.String(), "$")
 is.Equal(meander.Cost2.String(), "$$")
 is.Equal(meander.Cost3.String(), "$$$")
 is.Equal(meander.Cost4.String(), "$$$$")
 is.Equal(meander.Cost5.String(), "$$$$$")
}

This test asserts that calling the String method for each constant yields the expected
value. Running these tests will of course fail, because we haven't yet implemented
the String method.

Underneath the Cost constants, add the following map and the String method:

var costStrings = map[string]Cost{
 "$": Cost1,
 "$$": Cost2,
 "$$$": Cost3,
 "$$$$": Cost4,
 "$$$$$": Cost5,
}
func (l Cost) String() string {

Random Recommendations Web Service

[202]

 for s, v := range costStrings {
 if l == v {
 return s
 }
 }
 return "invalid"
}

The map[string]Cost variable maps the cost values to the string representation,
and the String method iterates over the map to return the appropriate value.

In our case, a simple return strings.Repeat("$", int(l))
would work just as well (and wins because it's simpler code), but it
often won't, therefore this section explores the general approach.

Now if we were to print out the Cost3 value, we would actually see $$$, which is
much more useful than numerical vales. However, since we do want to use these
strings in our API, we are also going to add a ParseCost method.

In cost_value_test.go, add the following unit test:

func TestParseCost(t *testing.T) {
 is := is.New(t)
 is.Equal(meander.Cost1, meander.ParseCost("$"))
 is.Equal(meander.Cost2, meander.ParseCost("$$"))
 is.Equal(meander.Cost3, meander.ParseCost("$$$"))
 is.Equal(meander.Cost4, meander.ParseCost("$$$$"))
 is.Equal(meander.Cost5, meander.ParseCost("$$$$$"))
}

Here we assert that calling ParseCost will in fact yield the appropriate value
depending on the input string.

In cost_value.go, add the following implementation code:

func ParseCost(s string) Cost {
 return costStrings[s]
}

Parsing a Cost string is very simple since this is how our map is laid out.

Chapter 7

[203]

As we need to represent a range of cost values, let's imagine a CostRange type,
and write the tests out for how we intend to use it. Add the following tests to
cost_value_test.go:

func TestParseCostRange(t *testing.T) {
 is := is.New(t)
 var l *meander.CostRange
 l = meander.ParseCostRange("$$...$$$")
 is.Equal(l.From, meander.Cost2)
 is.Equal(l.To, meander.Cost3)
 l = meander.ParseCostRange("$...$$$$$")
 is.Equal(l.From, meander.Cost1)
 is.Equal(l.To, meander.Cost5)
}
func TestCostRangeString(t *testing.T) {
 is := is.New(t)
 is.Equal("$$...$$$$", (&meander.CostRange{
 From: meander.Cost2,
 To: meander.Cost4,
 }).String())
}

We specify that passing in a string with two dollar characters first, followed by
three dots and then three dollar characters should create a new meander.CostRange
type that has From set to meander.Cost2, and To set to meander.Cost3. The second
test does the reverse by testing that the CostRange.String method returns the
appropriate value.

To make our tests pass, add the following CostRange type and associated String
and ParseString functions:

type CostRange struct {
 From Cost
 To Cost
}
func (r CostRange) String() string {
 return r.From.String() + "..." + r.To.String()
}
func ParseCostRange(s string) *CostRange {
 segs := strings.Split(s, "...")

Random Recommendations Web Service

[204]

 return &CostRange{
 From: ParseCost(segs[0]),
 To: ParseCost(segs[1]),
 }
}

This allows us to convert a string such as $...$$$$$ to a structure that contains
two Cost values; a From and To set and vice versa.

Querying the Google Places API
Now that we are capable of representing the results of the API, we need a way to
represent and initiate the actual query. Add the following structure to query.go:

type Query struct {
 Lat float64
 Lng float64
 Journey []string
 Radius int
 CostRangeStr string
}

This structure contains all the information we will need to build up the query, all of
which will actually come from the URL parameters in the requests from the client.
Next, add the following find method, which will be responsible for making the
actual request to Google's servers:

func (q *Query) find(types string) (*googleResponse, error) {
 u :=
"https://maps.googleapis.com/maps/api/place/nearbysearch/json"
 vals := make(url.Values)
 vals.Set("location", fmt.Sprintf("%g,%g", q.Lat, q.Lng))
 vals.Set("radius", fmt.Sprintf("%d", q.Radius))
 vals.Set("types", types)
 vals.Set("key", APIKey)
 if len(q.CostRangeStr) > 0 {
 r := ParseCostRange(q.CostRangeStr)
 vals.Set("minprice", fmt.Sprintf("%d", int(r.From)-1))
 vals.Set("maxprice", fmt.Sprintf("%d", int(r.To)-1))
 }

Chapter 7

[205]

 res, err := http.Get(u + "?" + vals.Encode())
 if err != nil {
 return nil, err
 }
 defer res.Body.Close()
 var response googleResponse
 if err := json.NewDecoder(res.Body).Decode(&response); err !=
nil {
 return nil, err
 }
 return &response, nil
}

First we build the request URL as per the Google Places API specification, by
appending the url.Values encoded string of the data for lat, lng, radius,
and of course the APIKey values.

The url.Values type is actually a map[string][]string type,
which is why we use make rather than new.

The types value we specify as an argument represents the kind of business to look
for. If there is a CostRangeStr, we parse it and set the minprice and maxprice values,
before finally calling http.Get to actually make the request. If the request is successful,
we defer the closing of the response body and use a json.Decoder method to decode
the JSON that comes back from the API into our googleResponse type.

Building recommendations
Next we need to write a method that will allow us to make many calls to find, for
the different steps in a journey. Underneath the find method, add the following
Run method to the Query struct:

// Run runs the query concurrently, and returns the results.
func (q *Query) Run() []interface{} {
 rand.Seed(time.Now().UnixNano())
 var w sync.WaitGroup
 var l sync.Mutex
 places := make([]interface{}, len(q.Journey))

Random Recommendations Web Service

[206]

 for i, r := range q.Journey {
 w.Add(1)
 go func(types string, i int) {
 defer w.Done()
 response, err := q.find(types)
 if err != nil {
 log.Println("Failed to find places:", err)
 return
 }
 if len(response.Results) == 0 {
 log.Println("No places found for", types)
 return
 }
 for _, result := range response.Results {
 for _, photo := range result.Photos {
 photo.URL =
"https://maps.googleapis.com/maps/api/place/photo?" +
 "maxwidth=1000&photoreference=" + photo.PhotoRef +
"&key=" + APIKey
 }
 }
 randI := rand.Intn(len(response.Results))
 l.Lock()
 places[i] = response.Results[randI]
 l.Unlock()
 }(r, i)
 }
 w.Wait() // wait for everything to finish
 return places
}

The first thing we do is set the random seed to the current time in nanoseconds past
since January 1, 1970 UTC. This ensures that every time we call the Run method and
use the rand package, the results will be different. If we didn't do this, our code
would suggest the same recommendations every time, which defeats the object.

Since we need to make many requests to Google—and since we want to make
sure this is as quick as possible—we are going to run all the queries at the same
time by making concurrent calls to our Query.find method. So we next create
a sync.WaitGroup method, and a map to hold the selected places along with a
sync.Mutex method to allow many go routines to access the map concurrently.

Chapter 7

[207]

We then iterate over each item in the Journey slice, which might be bar, cafe,
movie_theater. For each item, we add 1 to the WaitGroup object, and call
a goroutine. Inside the routine, we first defer the w.Done call informing the
WaitGroup object that this request has completed, before calling our find method
to make the actual request. Assuming no errors occurred, and it was indeed able
to find some places, we iterate over the results and build up a usable URL for any
photos that might be present. According to the Google Places API, we are given a
photoreference key, which we can use in another API call to get the actual image.
To save our clients from having to have knowledge of the Google Places API at all,
we build the complete URL for them.

We then lock the map locker and with a call to rand.Intn, pick one of the options
at random and insert it into the right position in the places slice, before unlocking
the sync.Mutex method.

Finally, we wait for all goroutines to complete with a call to w.Wait, before returning
the places.

Handlers that use query parameters
Now we need to wire up our /recommendations call, so head back to main.go in
the cmd folder, and add the following code inside the main function:

http.HandleFunc("/recommendations", func(w http.ResponseWriter, r
*http.Request) {
 q := &meander.Query{
 Journey: strings.Split(r.URL.Query().Get("journey"), "|"),
 }
 q.Lat, _ = strconv.ParseFloat(r.URL.Query().Get("lat"), 64)
 q.Lng, _ = strconv.ParseFloat(r.URL.Query().Get("lng"), 64)
 q.Radius, _ = strconv.Atoi(r.URL.Query().Get("radius"))
 q.CostRangeStr = r.URL.Query().Get("cost")
 places := q.Run()
 respond(w, r, places)
})

This handler is responsible for preparing the meander.Query object and calling its
Run method, before responding with the results. The http.Request type's URL
value exposes the Query data that provides a Get method that, in turn, looks up
a value for a given key.

Random Recommendations Web Service

[208]

The journey string is translated from the bar|cafe|movie_theater format to a
slice of strings, by splitting on the pipe character. Then a few calls to functions in
the strconv package turn the string latitude, longitude, and radius values into
numerical types.

CORS
The final piece of the first version of our API will be to implement CORS as we did
in the previous chapter. See if you can solve this problem yourself before reading
on to the solution in the next section.

If you are going to tackle this yourself, remember that your aim is to
set the Access-Control-Allow-Origin response header to *. Also
consider the http.HandlerFunc wrapping we did in the previous
chapter. The best place for this code is probably in the cmd program,
since that is what exposes the functionality through an HTTP endpoint.

In main.go, add the following cors function:

func cors(f http.HandlerFunc) http.HandlerFunc {
 return func(w http.ResponseWriter, r *http.Request) {
 w.Header().Set("Access-Control-Allow-Origin", "*")
 f(w, r)
 }
}

This familiar pattern takes in an http.HandlerFunc type and returns a new one
that sets the appropriate header before calling the passed-in function. Now we
can modify our code to make sure the cors function gets called for both of our
endpoints. Update the appropriate lines in the main function:

func main() {
 runtime.GOMAXPROCS(runtime.NumCPU())
 meander.APIKey = "YOUR_API_KEY"
 http.HandleFunc("/journeys", cors(func(w http.ResponseWriter, r
*http.Request) {
 respond(w, r, meander.Journeys)
 }))
 http.HandleFunc("/recommendations", cors(func(w
http.ResponseWriter, r *http.Request) {
 q := &meander.Query{
 Journey: strings.Split(r.URL.Query().Get("journey"), "|"),
 }

Chapter 7

[209]

 q.Lat, _ = strconv.ParseFloat(r.URL.Query().Get("lat"), 64)
 q.Lng, _ = strconv.ParseFloat(r.URL.Query().Get("lng"), 64)
 q.Radius, _ = strconv.Atoi(r.URL.Query().Get("radius"))
 q.CostRangeStr = r.URL.Query().Get("cost")
 places := q.Run()
 respond(w, r, places)
 }))
 http.ListenAndServe(":8080", http.DefaultServeMux)
}

Now calls to our API will be allowed from any domain without a cross-origin
error occurring.

Testing our API
Now that we are ready to test our API, head to a console and navigate to the cmd
folder. Because our program imports the meander package, building the program
will automatically build our meander package too.

Build and run the program:

go build –o meanderapi

./meanderapi

To see meaningful results from our API, let's take a minute to find your actual
latitude and longitude. Head over to http://mygeoposition.com/ and use the
web tools to get the x,y values for a location you are familiar with.

Or pick from these popular cities:

•	 London, England: 51.520707 x 0.153809
•	 New York, USA: 40.7127840 x -74.0059410
•	 Tokyo, Japan: 35.6894870 x 139.6917060
•	 San Francisco, USA: 37.7749290 x -122.4194160

Now open a web browser and access the /recommendations endpoint with some
appropriate values for the fields:

http://localhost:8080/recommendations?
 lat=51.520707&lng=-0.153809&radius=5000&
 journey=cafe|bar|casino|restaurant&
 cost=$...$$$

http://mygeoposition.com/

Random Recommendations Web Service

[210]

The following screenshot shows what a sample recommendation around London
might look like:

Feel free to play around with the values in the URL to see how powerful the simple
API is by trying various journey strings, tweaking the locations, and trying different
cost range value strings.

Web application
We are going to download a complete web application built to the same API
specifications, and point it at our implementation to see it come to life before our
eyes. Head over to https://github.com/matryer/goblueprints/tree/master/
chapter7/meanderweb and download the meanderweb project into your GOPATH.

In a terminal, navigate to the meanderweb folder, and build and run it:

go build –o meanderweb

./meanderweb

https://github.com/matryer/goblueprints/tree/master/chapter7/meanderweb
https://github.com/matryer/goblueprints/tree/master/chapter7/meanderweb

Chapter 7

[211]

This will start a website running on localhost:8081, which is hardcoded to look
for the API running at localhost:8080. Because we added the CORS support,
this won't be a problem despite them running on different domains.

Open a browser to http://localhost:8081/ and interact with the application,
while somebody else built the UI it would be pretty useless without the API that
we built powering it.

Summary
In this chapter, we built an API that consumes and abstracts the Google Places API
to provide a fun and interesting way of letting users plan their days and evenings.

We started by writing some simple and short user stories that described at a really
high level what we wanted to achieve, without trying to design the implementation
up front. In order to parallelize the project, we agreed the meeting point of the
project as the API design, and we built towards it (as would our partners).

We embedded data directly in code, avoiding the need to investigate, design, and
implement a data store in the early stages of a project. By caring instead about
how that data is accessed (via the API endpoint), we allowed our future selves to
completely change how and where the data is stored, without breaking any apps
that have been written to our API.

We implemented the Facade interface, which allows our structs and other types to
provide public representations of them, without revealing messy or sensitive details
about our implementation.

Our foray into enumerators gave us a useful starting point to build enumerated
types, even though there is no official support for them in the language. The iota
keyword that we used lets us specify constants of our own numerical type, with
incrementing values. The common String method that we implemented showed
us how to make sure our enumerated types don't become obscure numbers in our
logs. At the same time, we also saw a real-world example of TDD, and red/green
programming where we wrote unit tests that first fail, but which we then go on to
make pass by writing the implementation code.

Filesystem Backup
There are many solutions that provide filesystem backup capabilities. These include
everything from apps such as Dropbox, Box, Carbonite to hardware solutions such
as Apple's Time Machine, Seagate, or network-attached storage products, to name
a few. Most consumer tools provide some key automatic functionality, along with
an app or website for you to manage your policies and content. Often, especially for
developers, these tools don't quite do the things we need them to. However, thanks
to Go's standard library (that includes packages such as ioutil and os) we have
everything we need to build a backup solution that behaves exactly as we need it to.

For our final project, we will build a simple filesystem backup for our source code
projects that archive specified folders and save a snapshot of them every time we
make a change. The change could be when we tweak a file and save it, or if we add
new files and folders, or even if we delete a file. We want to be able to go back to
any point in time to retrieve old files.

Specifically in this chapter, you will learn:

•	 How to structure projects that consist of packages and
command-line tools

•	 A pragmatic approach to persisting simple data across tool executions
•	 How the os package allows you to interact with a filesystem
•	 How to run code in an infinite timed loop, while respecting Ctrl + C
•	 How to use filepath.Walk to iterate over files and folders
•	 How to quickly determine if the contents of a directory have changed
•	 How to use the archive/zip package to zip files
•	 How to build tools that care about a combination of command-line

flags and normal arguments

Filesystem Backup

[214]

Solution design
We will start by listing some high-level acceptance criteria for our solution and the
approach we want to take:

•	 The solution should create a snapshot of our files at regular intervals,
as we make changes to our source code projects

•	 We want to control the interval at which the directories are checked
for changes

•	 Code projects are primarily text-based, so zipping the directories to
generate archives will save a lot of space

•	 We will build this project quickly, while keeping a close watch over
where we might want to make improvements later

•	 Any implementation decisions we make should be easily modified
if we decide to change our implementation in the future

•	 We will build two command-line tools, the backend daemon that
does the work, and a user interaction utility that will let us list, add,
and remove paths from the backup service

Project structure
It is common in Go solutions to have, in a single project, both a package that allows
other Go programmers to use your capabilities, and a command-line tool that allows
end users to use your code.

A convention is emerging to structure the project by having the package in the main
project folder, and the command-line tool inside a subfolder called cmd, or cmds if
you have multiple commands. Because all packages (regardless of the directory tree)
are equal in Go, you can import the main package from the subpackages, knowing
you'll never need to import the commands from the main package. This may seem
like an unnecessary abstraction, but is actually quite a common pattern and can be
seen in the standard Go tool chain with examples such as gofmt and goimports.

For example, for our project we are going to write a package called backup, and two
command-line tools: the daemon and the user interaction tool. We will structure our
project in the following way:

/backup - package
/backup/cmds/backup – user interaction tool
/backup/cmds/backupd – worker daemon

Chapter 8

[215]

Backup package
We are first going to write the backup package, of which we will become the first
customer when we write the associated tools. The package will be responsible for
deciding whether directories have changed and need backing up or not, as well as
actually performing the backup procedure too.

Obvious interfaces?
The first thing to think about when embarking on a new Go program is whether any
interfaces stand out to you. We don't want to over-abstract or waste too much time
up front designing something that we know will change as we start to code, but that
doesn't mean we shouldn't look for obvious concepts that are worth pulling out.
Since our code will archive files, the Archiver interface pops out as a candidate.

Create a new folder inside your GOPATH called backup, and add the following
archiver.go code:

package backup

type Archiver interface {
 Archive(src, dest string) error
}

An Archiver interface will specify a method called Archive that takes source and
destination paths and returns an error. Implementations of this interface will be
responsible for archiving the source folder, and storing it in the destination path.

Defining an interface up front is a nice way to get some concepts out
of our heads and into code; it doesn't mean this interface can't change
as we evolve our solution as long as we remember the power of simple
interfaces. Also, remember that most of the I/O interfaces in the io
package expose only a single method.

From the very beginning, we have made the case that while we are going to
implement ZIP files as our archive format, we could easily swap this out later
with another kind of Archiver format.

Filesystem Backup

[216]

Implementing ZIP
Now that we have the interface for our Archiver types, we are going to implement
one that uses the ZIP file format.

Add the following struct definition to archiver.go:

type zipper struct{}

We are not going to export this type, which might make you jump to the conclusion
that users outside of the package won't be able to make use of it. In fact, we are going
to provide them with an instance of the type for them to use, to save them from
having to worry about creating and managing their own types.

Add the following exported implementation:

// Zip is an Archiver that zips and unzips files.
var ZIP Archiver = (*zipper)(nil)

This curious snippet of Go voodoo is actually a very interesting way of exposing the
intent to the compiler, without using any memory (literally 0 bytes). We are defining
a variable called ZIP of type Archiver, so from outside the package it's pretty clear
that we can use that variable wherever Archiver is needed—if you want to zip things.
Then we assign it with nil cast to the type *zipper. We know that nil takes no
memory, but since it's cast to a zipper pointer, and given that our zipper struct has
no fields, it's an appropriate way of solving a problem, which hides the complexity
of code (and indeed the actual implementation) from outside users. There is no reason
anybody outside of the package needs to know about our zipper type at all, which
frees us up to change the internals without touching the externals at any time; the
true power of interfaces.

Another handy side benefit to this trick is that the compiler will now be checking
whether our zipper type properly implements the Archiver interface or not, so if
you try to build this code you'll get a compiler error:

./archiver.go:10: cannot use (*zipper)(nil) (type *zipper) as type
Archiver in assignment:

 *zipper does not implement Archiver (missing Archive method)

We see that our zipper type does not implement the Archive method as mandated
in the interface.

Chapter 8

[217]

You can also use the Archive method in test code to ensure that your
types implement the interfaces they should. If you don't need to use
the variable, you can always throw it away by using an underscore
and you'll still get the compiler help:

var _ Interface = (*Implementation)(nil)

To make the compiler happy, we are going to add the implementation of the
Archive method for our zipper type.

Add the following code to archiver.go:

func (z *zipper) Archive(src, dest string) error {
 if err := os.MkdirAll(filepath.Dir(dest), 0777); err != nil {
 return err
 }
 out, err := os.Create(dest)
 if err != nil {
 return err
 }
 defer out.Close()
 w := zip.NewWriter(out)
 defer w.Close()
 return filepath.Walk(src, func(path string, info os.FileInfo,
err error) error {
 if info.IsDir() {
 return nil // skip
 }
 if err != nil {
 return err
 }
 in, err := os.Open(path)
 if err != nil {
 return err
 }
 defer in.Close()
 f, err := w.Create(path)
 if err != nil {
 return err
 }
 io.Copy(f, in)
 return nil
 })
}

Filesystem Backup

[218]

You will have to also import the archive/zip package from the Go standard library.
In our Archive method, we take the following steps to prepare writing to a ZIP file:

•	 Use os.MkdirAll to ensure the destination directory exists. The 0777 code
represents the file permissions with which to create any missing directories.

•	 Use os.Create to create a new file as specified by the dest path.
•	 If the file is created without error, defer the closing of the file with defer

out.Close().
•	 Use zip.NewWriter to create a new zip.Writer type that will write to

the file we just created, and defer the closing of the writer.

Once we have a zip.Writer type ready to go, we use the filepath.Walk function
to iterate over the source directory src.

The filepath.Walk function takes two arguments: the root path, and a callback
function func to be called for every item (files and folders) it encounters while
iterating over the file system. The filepath.Walk function is recursive, so it will
travel deep into subfolders too. The callback function itself takes three arguments:
the full path of the file, the os.FileInfo object that describes the file or folder itself,
and an error (it also returns an error in case something goes wrong). If any calls to
the callback function result in an error being returned, the operation will be aborted
and filepath.Walk returns that error. We simply pass that up to the caller of
Archive and let them worry about it, since there's nothing more we can do.

For each item in the tree, our code takes the following steps:

•	 If the info.IsDir method tells us that the item is a folder, we just return
nil, effectively skipping it. There is no reason to add folders to ZIP archives,
because anyway the path of the files will encode that information for us.

•	 If an error is passed in (via the third argument), it means something went
wrong when trying to access information about the file. This is uncommon,
so we just return the error, which will eventually be passed out to the caller
of Archive.

•	 Use os.Open to open the source file for reading, and if successful defer
its closing.

•	 Call Create on the ZipWriter object to indicate that we want to create
a new compressed file, and give it the full path of the file, which includes
the directories it is nested inside.

•	 Use io.Copy to read all of the bytes from the source file, and write them
through the ZipWriter object to the ZIP file we opened earlier.

•	 Return nil to indicate no errors.

Chapter 8

[219]

This chapter will not cover unit testing or Test-driven Development (TDD)
practices, but feel free to write a test to ensure that our implementation does what
it is meant to do.

Since we are writing a package, spend some time commenting the
exported pieces so far. You can use golint to help you find any
exported pieces you may have missed.

Has the filesystem changed?
One of the biggest problems our backup system has is deciding whether a folder
has changed or not in a cross-platform, predictable, and reliable way. A few things
spring to mind when we think about this problem: should we just check the last
modified date on the top-level folder? Should we use system notifications to be
informed whenever a file we care about changes? There are problems with both
of these approaches, and it turns out it's not a trivial problem to solve.

We are instead going to generate an MD5 hash made up of all of the information
that we care about when considering whether something has changed or not.

Looking at the os.FileInfo type, we can see that we can find out a lot of
information about a file:

type FileInfo interface {
 Name() string // base name of the file
 Size() int64 // length in bytes for regular files;
 system-dependent for others
 Mode() FileMode // file mode bits
 ModTime() time.Time // modification time
 IsDir() bool // abbreviation for Mode().IsDir()
 Sys() interface{} // underlying data source (can return nil)
}

To ensure we are aware of a variety of changes to any file in a folder, the hash will be
made up of the filename and path (so if they rename a file, the hash will be different),
size (if a file changes size, it's obviously different), last modified date, whether the
item is a file or folder, and file mode bits. Even though we won't be archiving the
folders, we still care about their names and the tree structure of the folder.

Create a new file called dirhash.go and add the following function:

package backup
import (
 "crypto/md5"

Filesystem Backup

[220]

 "fmt"
 "io"
 "os"
 "path/filepath"
)
func DirHash(path string) (string, error) {
 hash := md5.New()
 err := filepath.Walk(path, func(path string, info os.FileInfo, err
error) error {
 if err != nil {
 return err
 }
 io.WriteString(hash, path)
 fmt.Fprintf(hash, "%v", info.IsDir())
 fmt.Fprintf(hash, "%v", info.ModTime())
 fmt.Fprintf(hash, "%v", info.Mode())
 fmt.Fprintf(hash, "%v", info.Name())
 fmt.Fprintf(hash, "%v", info.Size())
 return nil
 })
 if err != nil {
 return "", err
 }
 return fmt.Sprintf("%x", hash.Sum(nil)), nil
}

We first create a new hash.Hash that knows how to calculate MD5s, before using
filepath.Walk to iterate over all of the files and folders inside the specified path
directory. For each item, assuming there are no errors, we write the differential
information to the hash generator using io.WriteString, which lets us write
a string to an io.Writer, and fmt.Fprintf, which does the same but exposes
formatting capabilities at the same time, allowing us to generate the default
value format for each item using the %v format verb.

Once each file has been processed, and assuming no errors occurred, we
then use fmt.Sprintf to generate the result string. The Sum method on a
hash.Hash calculates the final hash value with the specified values appended.
In our case, we do not want to append anything since we've already added
all of the information we care about, so we just pass nil. The %x format verb
indicates that we want the value to be represented in hex (base 16) with
lowercase letters. This is the usual way of representing an MD5 hash.

Chapter 8

[221]

Checking for changes and initiating a backup
Now that we have the ability to hash a folder, and to perform a backup, we are going
to put the two together in a new type called Monitor. The Monitor type will have a
map of paths with their associated hashes, a reference to any Archiver type (of course,
we'll use backup.ZIP for now), and a destination string representing where to put
the archives.

Create a new file called monitor.go and add the following definition:

type Monitor struct {
 Paths map[string]string
 Archiver Archiver
 Destination string
}

In order to trigger a check for changes, we are going to add the following Now
method:

func (m *Monitor) Now() (int, error) {
 var counter int
 for path, lastHash := range m.Paths {
 newHash, err := DirHash(path)
 if err != nil {
 return 0, err
 }
 if newHash != lastHash {
 err := m.act(path)
 if err != nil {
 return counter, err
 }
 m.Paths[path] = newHash // update the hash
 counter++
 }
 }
 return counter, nil
}

The Now method iterates over every path in the map and generates the latest hash
of that folder. If the hash does not match the hash from the map (generated the last
time it checked), then it is considered to have changed, and needs backing up again.
We do this with a call to the as yet unwritten act method, before then updating the
hash in the map with this new hash.

Filesystem Backup

[222]

To give our users a high-level indication of what happened when they called Now, we
are also maintaining a counter which we increment every time we back up a folder.
We will use this later to keep our end users up-to-date on what the system is doing
without bombarding them with information.

m.act undefined (type *Monitor has no field or method act)

The compiler is helping us again and reminding us that we have yet to add the
act method:

func (m *Monitor) act(path string) error {
 dirname := filepath.Base(path)
 filename := fmt.Sprintf("%d.zip", time.Now().UnixNano())
 return m.Archiver.Archive(path, filepath.Join(m.Destination,
dirname, filename))
}

Because we have done the heavy lifting in our ZIP Archiver type, all we have
to do here is generate a filename, decide where the archive will go, and call the
Archive method.

If the Archive method returns an error, the act method and then
the Now method will each return it. This mechanism of passing errors
up the chain is very common in Go and allows you to either handle
cases where you can do something useful to recover, or else defer the
problem to somebody else.

The act method in the preceding code uses time.Now().UnixNano() to generate
a timestamp filename and hardcodes the .zip extension.

Hardcoding is OK for a short while
Hardcoding the file extension like we have is OK in the beginning, but if you
think about it we have blended concerns a little here. If we change the Archiver
implementation to use RAR or a compression format of our making, the .zip
extension would no longer be appropriate.

Before reading on, think about what steps you might take to
avoid hardcoding. Where does the filename extension decision
live? What changes would you need to make in order to avoid
hardcoding properly?

Chapter 8

[223]

The right place for the filename extensions decision is probably in the Archiver
interface, since it knows the kind of archiving it will be doing. So we could add an
Ext() string method and access that from our act method. But we can add a little
extra power with not much extra work by instead allowing Archiver authors to
specify the entire filename format, rather than just the extension.

Back in archiver.go, update the Archiver interface definition:

type Archiver interface {
 DestFmt() string
 Archive(src, dest string) error
}

Our zipper type needs to now implement this:

func (z *zipper) DestFmt() string {
 return "%d.zip"
}

Now that we can ask our act method to get the whole format string from the
Archiver interface, update the act method:

func (m *Monitor) act(path string) error {
 dirname := filepath.Base(path)
 filename := fmt.Sprintf(m.Archiver.DestFmt(),
time.Now().UnixNano())
 return m.Archiver.Archive(path, filepath.Join(m.Destination,
dirname, filename))
}

The user command-line tool
The first of two tools we will build allows the user to add, list, and remove paths
for the backup daemon tool (which we will write later). You could expose a web
interface, or even use the binding packages for desktop user interface integration,
but we are going to keep things simple and build ourselves a command-line tool.

Create a new folder called cmds inside the backup folder and create another backup
folder inside that.

It's good practice to name the folder of the command and the
command binary itself the same.

Filesystem Backup

[224]

Inside our new backup folder, add the following code to main.go:

func main() {
 var fatalErr error
 defer func() {
 if fatalErr != nil {
 flag.PrintDefaults()
 log.Fatalln(fatalErr)
 }
 }()
 var (
 dbpath = flag.String("db", "./backupdata", "path to database
directory")
)
 flag.Parse()
 args := flag.Args()
 if len(args) < 1 {
 fatalErr = errors.New("invalid usage; must specify command")
 return
 }
}

We first define our fatalErr variable and defer the function that checks to ensure
that value is nil. If it is not, it will print the error along with flag defaults and exit
with a non-zero status code. We then define a flag called db that expects the path
to the filedb database directory, before parsing the flags and getting the remaining
arguments and ensuring there is at least one.

Persisting small data
In order to keep track of the paths, and the hashes that we generate, we will need
some kind of data storage mechanism that ideally works even when we stop and
start our programs. We have lots of choices here: everything from a text file to a
full horizontally scalable database solution. The Go ethos of simplicity tells us that
building-in a database dependency to our little backup program would not be a great
idea; rather we should ask what is the simplest way we can solve this problem?

The github.com/matryer/filedb package is an experimental solution for just this
kind of problem. It lets you interact with the filesystem as though it were a very
simple schemaless database. It takes its design lead from packages such as mgo, and
can be used in the cases where data querying needs are very simple. In filedb, a
database is a folder, and a collection is a file where each line represents a different
record. Of course, this could all change as the filedb project evolves, but the
interface hopefully won't.

Chapter 8

[225]

Add the following code to the end of the main function:

db, err := filedb.Dial(*dbpath)
if err != nil {
 fatalErr = err
 return
}
defer db.Close()
col, err := db.C("paths")
if err != nil {
 fatalErr = err
 return
}

Here we use the filedb.Dial function to connect with the filedb database.
In actuality, nothing much happens here except specifying where the database
is, since there are no real database servers to connect to (although this might
change in the future, which is why such provisions exist in the interface). If that
was successful, we defer the closing of the database. Closing the database does
actually do something, since files may be open that need to be cleaned up.

Following the mgo pattern, next we specify a collection using the C method and
keep a reference to it in the col variable. If at any point an error occurs, we assign
it to the fatalErr variable and return.

To store data, we are going to define a type called path, which will store the full
path and the last hash value, and use JSON encoding to store this in our filedb
database. Add the following struct definition above the main function:

type path struct {
 Path string
 Hash string
}

Parsing arguments
When we call flag.Args (as opposed to os.Args), we receive a slice of arguments
excluding the flags. This allows us to mix flag arguments and non-flag arguments
in the same tool.

We want our tool to be able to be used in the following ways:

•	 To add a path:
backup -db=/path/to/db add {path} [paths...]

Filesystem Backup

[226]

•	 To remove a path:
backup -db=/path/to/db remove {path} [paths...]

•	 To list all paths:

backup -db=/path/to/db list

To achieve this, since we have already dealt with flags, we must check the first
(non-flag) argument.

Add the following code to the main function:

switch strings.ToLower(args[0]) {
case "list":
case "add":
case "remove":
}

Here we simply switch on the first argument, after setting it to lowercase (if the
user types backup LIST, we still want it to work).

Listing the paths
To list the paths in the database, we are going to use a ForEach method on the
path's col variable. Add the following code to the list case:

var path path
col.ForEach(func(i int, data []byte) bool {
 err := json.Unmarshal(data, &path)
 if err != nil {
 fatalErr = err
 return false
 }
 fmt.Printf("= %s\n", path)
 return false
})

We pass in a callback function to ForEach that will be called for every item in that
collection. We then Unmarshal it from JSON, into our path type, and just print it out
using fmt.Printf. We return false as per the filedb interface, which tells us that
returning true would stop iterating and that we want to make sure we list them all.

Chapter 8

[227]

String representations for your own types
If you print structs in Go in this way, using the %s format verbs, you can get some
messy results that are difficult for users to read. If, however, the type implements
a String() string method, that will be used instead and we can use this to control
what gets printed. Below the path struct, add the following method:

func (p path) String() string {
 return fmt.Sprintf("%s [%s]", p.Path, p.Hash)
}

This tells the path type how it should represent itself as a string.

Adding paths
To add a path, or many paths, we are going to iterate over the remaining arguments
and call the InsertJSON method for each one. Add the following code to the add case:

if len(args[1:]) == 0 {
 fatalErr = errors.New("must specify path to add")
 return
}
for _, p := range args[1:] {
 path := &path{Path: p, Hash: "Not yet archived"}
 if err := col.InsertJSON(path); err != nil {
 fatalErr = err
 return
 }
 fmt.Printf("+ %s\n", path)
}

If the user hasn't specified any additional arguments, like if they just called backup
add without typing any paths, we will return a fatal error. Otherwise, we do the
work and print out the path string (prefixed with a + symbol) to indicate that it was
successfully added. By default, we'll set the hash to the Not yet archived string
literal—this is an invalid hash but serves the dual purposes of letting the user know
that it hasn't yet been archived, as well as indicating as such to our code (given that
a hash of the folder will never equal that string).

Filesystem Backup

[228]

Removing paths
To remove a path, or many paths, we use the RemoveEach method for the path's
collection. Add the following code to the remove case:

var path path
col.RemoveEach(func(i int, data []byte) (bool, bool) {
 err := json.Unmarshal(data, &path)
 if err != nil {
 fatalErr = err
 return false, true
 }
 for _, p := range args[1:] {
 if path.Path == p {
 fmt.Printf("- %s\n", path)
 return true, false
 }
 }
 return false, false
})

The callback function we provide to RemoveEach expects us to return two bool
types: the first one indicates whether the item should be removed or not, and the
second one indicates whether we should stop iterating or not.

Using our new tool
We have completed our simple backup command-line tool. Let's see it in action.
Create a folder called backupdata inside backup/cmds/backup; this will become
the filedb database.

Build the tool in a terminal by navigating to the main.go file and running:

go build -o backup

If all is well, we can now add a path:

./backup -db=./backupdata add ./test ./test2

You should see the expected output:

+ ./test [Not yet archived]

+ ./test2 [Not yet archived]

Chapter 8

[229]

Now let's add another path:

./backup -db=./backupdata add ./test3

You should now see the complete list:

./backup -db=./backupdata list

Our program should yield:

= ./test [Not yet archived]

= ./test2 [Not yet archived]

= ./test3 [Not yet archived]

Let's remove test3 to make sure the remove functionality is working:

./backup -db=./backupdata remove ./test3

./backup -db=./backupdata list

This will take us back to:

+ ./test [Not yet archived]

+ ./test2 [Not yet archived]

We are now able to interact with the filedb database in a way that makes sense
for our use case. Next we build the daemon program that will actually use our
backup package to do the work.

The daemon backup tool
The backup tool, which we will call backupd, will be responsible for periodically
checking the paths listed in the filedb database, hashing the folders to see whether
anything has changed, and using the backup package to actually perform the
archiving of folders that need it.

Create a new folder called backupd alongside the backup/cmds/backup folder,
and let's jump right into handling the fatal errors and flags:

func main() {
 var fatalErr error
 defer func() {
 if fatalErr != nil {

Filesystem Backup

[230]

 log.Fatalln(fatalErr)
 }
 }()
 var (
 interval = flag.Int("interval", 10, "interval between checks
(seconds)")
 archive = flag.String("archive", "archive", "path to archive
location")
 dbpath = flag.String("db", "./db", "path to filedb
database")
)
 flag.Parse()
}

You must be quite used to seeing this kind of code by now. We defer the handling of
fatal errors before specifying three flags: interval, archive, and db. The interval
flag represents the number of seconds between checks to see whether folders have
changed, the archive flag is the path to the archive location where ZIP files will go,
and the db flag is the path to the same filedb database that the backup command
is interacting with. The usual call to flag.Parse sets the variables up and validates
whether we're ready to move on.

In order to check the hashes of the folders, we are going to need an instance of
Monitor that we wrote earlier. Append the following code to the main function:

m := &backup.Monitor{
 Destination: *archive,
 Archiver: backup.ZIP,
 Paths: make(map[string]string),
}

Here we create a backup.Monitor method using the archive value as the
Destination type. We'll use the backup.ZIP archiver and create a map ready
for it to store the paths and hashes internally. At the start of the daemon, we want
to load the paths from the database so that it doesn't archive unnecessarily as we
stop and start things.

Add the following code to the main function:

db, err := filedb.Dial(*dbpath)
if err != nil {
 fatalErr = err

Chapter 8

[231]

 return
}
defer db.Close()
col, err := db.C("paths")
if err != nil {
 fatalErr = err
 return
}

You have seen this code before too; it dials the database and creates an object that
allows us to interact with the paths collection. If anything fails, we set fatalErr
and return.

Duplicated structures
Since we're going to use the same path structure as in our user command-line
tool program, we need to include a definition of it for this program too. Insert the
following structure above the main function:

type path struct {
 Path string
 Hash string
}

The object-oriented programmers out there are no doubt by now screaming at
the pages demanding for this shared snippet to exist in one place only and not
be duplicated in both programs. I urge you to resist this compulsion of early
abstraction. These four lines of code hardly justify a new package and therefore
dependency for our code, when they can just as easily exist in both programs with
very little overhead. Consider also that we might want to add a LastChecked field
to our backupd program so that we could add rules where each folder only gets
archived at most once an hour. Our backup program doesn't care about this and
will chug along perfectly happy with its view into what fields constitute a path.

Caching data
We can now query all existing paths and update the Paths map, which is a
useful technique to increase the speed of a program, especially given slow or
disconnected data stores. By loading the data into a cache (in our case, the Paths
map), we can access it at lightening speeds without having to consult the files
each time we need information.

Filesystem Backup

[232]

Add the following code to the body of the main function:

var path path
col.ForEach(func(_ int, data []byte) bool {
 if err := json.Unmarshal(data, &path); err != nil {
 fatalErr = err
 return true
 }
 m.Paths[path.Path] = path.Hash
 return false // carry on
})
if fatalErr != nil {
 return
}
if len(m.Paths) < 1 {
 fatalErr = errors.New("no paths - use backup tool to add at
least one")
 return
}

Using the ForEach method again allows us to iterate over all the paths in the
database. We Unmarshal the JSON bytes into the same path structure as we used
in our other program and set the values in the Paths map. Assuming nothing goes
wrong, we do a final check to make sure there is at least one path, and if not, return
with an error.

One limitation to our program is that it will not dynamically add
paths once it has started. The daemon would need to be restarted.
If this bothers you, you could always build in a mechanism that
updates the Paths map periodically.

Infinite loops
The next thing we need to do is to perform a check on the hashes right away
to see whether anything needs archiving, before entering into an infinite timed
loop where we check again at regular specified intervals.

An infinite loop sounds like a bad idea; in fact to some it sounds like a bug.
However, since we're talking about an infinite loop within this program, and
since infinite loops can be easily broken with a simple break command, they're
not as dramatic as they might sound.

Chapter 8

[233]

In Go, to write an infinite loop is as simple as:

for {}

The instructions inside the braces get executed over and over again, as quickly
as the machine running the code can execute them. Again this sounds like a bad
plan, unless you're careful about what you're asking it to do. In our case, we are
immediately initiating a select case on the two channels that will block safely
until one of the channels has something interesting to say.

Add the following code:

check(m, col)
signalChan := make(chan os.Signal, 1)
signal.Notify(signalChan, syscall.SIGINT, syscall.SIGTERM)
for {
 select {
 case <-time.After(time.Duration(*interval) * time.Second):
 check(m, col)
 case <-signalChan:
 // stop
 fmt.Println()
 log.Printf("Stopping...")
 goto stop
 }
}
stop:

Of course, as responsible programmers, we care about what happens when the user
terminates our programs. So after a call to the check method, which doesn't yet exist,
we make a signal channel and use signal.Notify to ask for the termination signal
to be given to the channel, rather than handled automatically. In our infinite for
loop, we select on two possibilities: either the timer channel sends a message or
the termination signal channel sends a message. If it's the timer channel message,
we call check again, otherwise we go about terminating the program.

The time.After function returns a channel that will send a signal (actually the
current time) after the specified time has elapsed. The somewhat confusing time.
Duration(*interval) * time.Second code simply indicates the amount of time
to wait before the signal is sent; the first * character is a dereference operator since
the flag.Int method represents a pointer to an int, and not the int itself. The second
* character multiplies the interval value by time.Second, which gives a value
equivalent to the specified interval in seconds. Casting the *interval int to time.
Duration is required so that the compiler knows we are dealing with numbers.

Filesystem Backup

[234]

We take a short trip down the memory lane in the preceding code snippet by using
the goto statement to jump out of the switch and to block loops. We could do away
with the goto statement altogether and just return when a termination signal is
received, but the pattern discussed here allows us to run non-deferred code after
the for loop, should we wish to.

Updating filedb records
All that is left is for us to implement the check function that should call the Now
method on the Monitor type and update the database with new hashes if there
are any.

Underneath the main function, add the following code:

func check(m *backup.Monitor, col *filedb.C) {
 log.Println("Checking...")
 counter, err := m.Now()
 if err != nil {
 log.Fatalln("failed to backup:", err)
 }
 if counter > 0 {
 log.Printf(" Archived %d directories\n", counter)
 // update hashes
 var path path
 col.SelectEach(func(_ int, data []byte) (bool, []byte, bool) {
 if err := json.Unmarshal(data, &path); err != nil {
 log.Println("failed to unmarshal data (skipping):", err)
 return true, data, false
 }
 path.Hash, _ = m.Paths[path.Path]
 newdata, err := json.Marshal(&path)
 if err != nil {
 log.Println("failed to marshal data (skipping):", err)
 return true, data, false
 }
 return true, newdata, false
 })
 } else {
 log.Println(" No changes")
 }
}

Chapter 8

[235]

The check function first tells the user that a check is happening, before immediately
calling Now. If the Monitor type did any work for us, which is to ask if it archived
any files, we output them to the user and go on to update the database with the new
values. The SelectEach method allows us to change each record in the collection if
we so wish, by returning the replacement bytes. So we Unmarshal the bytes to get the
path structure, update the hash value and return the marshaled bytes. This ensures
that next time we start a backupd process, it will do so with the correct hash values.

Testing our solution
Let's see whether our two programs play nicely together and what affects the code
inside our backup package. You may want to open two terminal windows for this,
since we'll be running two programs.

We have already added some paths to the database, so let's use backup to see them:

./backup -db="./backupdata" list

You should see the two test folders; if you don't, refer back to the Adding paths
section.

= ./test [Not yet archived]

= ./test2 [Not yet archived]

In another window, navigate to the backupd folder and create our two test folders
called test and test2.

Build backupd using the usual method:

go build -o backupd

Assuming all is well, we can now start the backup process being sure to point the
db path to the same path as we used for the backup program, and specify that we
want to use a new folder called archive to store the ZIP files. For testing purposes,
let's specify an interval of 5 seconds to save time:

./backupd -db="../backup/backupdata/" -archive="./archive" -
interval=5

Immediately, backupd should check the folders, calculate the hashes, notice that
they are different (to Not yet archived), and initiate the archive process for both
folders. It will print the output telling us this:

Checking...

Archived 2 directories

Filesystem Backup

[236]

Open the newly created archive folder inside backup/cmds/backupd and notice it has
created two subfolders: test and test2. Inside those are compressed archive versions
of the empty folders. Feel free to unzip one and see; not very exciting so far.

Meanwhile, back in the terminal window, backupd has been checking the folders
again for changes:

Checking...

 No changes

Checking...

 No changes

In your favorite text editor, create a new text file inside the test2 folder containing the
word test, and save it as one.txt. After a few seconds, you will see that backupd has
noticed the new file and created another snapshot inside the archive/test2 folder.

Of course, it has a different filename because the time is different, but if you unzip it
you will notice that it has indeed created a compressed archive version of the folder.

Play around with the solution by taking the following actions:

•	 Change the contents of the one.txt file
•	 Add a file to the test folder too
•	 Delete a file

Summary
In this chapter, we successfully built a very powerful and flexible backup system
for your code projects. You can see how simple it would be to extend or modify the
behavior of these programs. The scope for potential problems that you could go on
to solve is limitless.

Rather than having a local archive destination folder like we did in the previous
section, imagine mounting a network storage device and using that instead. Suddenly,
you have off-site (or at least off-machine) backups of those vital files. You could easily
set a Dropbox folder as the archive destination, which would mean not only do you get
access to the snapshots yourself, but also a copy is stored in the cloud and can even be
shared with other users.

Extending the Archiver interface to support Restore operations (which would just
use the encoding/zip package to unzip the files) allows you to build tools that can
peer inside the archives and access the changes of individual files much like Time
Machine allows you to do. Indexing the files gives you full search across the entire
history of your code, much like GitHub does.

Chapter 8

[237]

Since the filenames are timestamps, you could have backed up retiring old archives
to less active storage mediums, or summarized the changes into a daily dump.

Obviously, backup software exists, is well tested, and used through the world and
it may be a smart move to focus on solving problems that haven't yet been solved.
But when it requires such little effort to write small programs to get things done, it
is often worth doing because of the control it gives you. When you write the code,
you can get exactly what you want without compromise, and it's down to each
individual to make that call.

Specifically in this chapter, we explored how easy Go's standard library makes it
to interact with the filesystem: opening files for reading, creating new files, and
making directories. The os package mixed in with the powerful types from the io
package, blended further with capabilities like encoding/zip and others, gives a
clear example of how extremely simple Go interfaces can be composed to deliver
very powerful results.

Good Practices for a Stable
Go Environment

Writing Go code is a fun and enjoyable experience where compile-time errors
—rather than being a pain—actually guide you to write robust, high-quality code.
However, every now and again, you will encounter environmental issues that
start to get in the way and break your flow. While you can usually resolve these
issues after some searching and a little tweaking, setting up your development
environment correctly goes a long way in reducing problems, allowing you to
focus on building useful applications.

In this chapter, we are going to install Go from scratch on a new machine and
discuss some of the environmental options we have and the impact they might
have in the future. We will also consider how collaboration might influence some
of our decisions, as well as what impact open sourcing our packages might have.

Specifically, we are going to:

•	 Get the Go source code and build it natively on your development machine
•	 Learn what the GOPATH environment variable is for, and discuss a sensible

approach to its use
•	 Learn about the Go tools and how to use them to keep the quality of our

code high
•	 Learn how to use a tool to automatically manage our imports
•	 Think about "on save" operations for our .go files, and how we

can integrate the Go tools as part of our daily development

Good Practices for a Stable Go Environment

[240]

Installing Go
Go is an open source project written originally in C, which means we can compile
our own version from the code easily; this remains the best option for installing Go
for a variety of reasons. It allows us to navigate through the source if we need to look
something up later, either in the standard library Go code, or in the C code of the tools.
It also allows us to easily update to newer versions of Go or experiment with release
candidates as they come out, just by pulling a different tag or branch from the code
repository and building again. Of course, we can also easily roll back to earlier versions
if we need to, and even fix bugs and generate pull requests to send to the Go core team
for them to consider contributions to the project.

A continually updated resource for installing Go from its source
on a variety of platforms can be found online at http://
golang.org/doc/install/source or by searching for
Install Golang from source. This chapter will cover the
same things, but if you encounter problems, the Internet is going
to be your best friend in helping resolve issues.

Installing the C tools
Since the Go tool chain is written in C, we will actually be compiling C code
when we build our Go installation. This may seem a little counter-intuitive; a
programming language was written using a different programming language,
but of course, Go didn't exist when the Go core team started writing Go, but C
did. It is more accurate to say that the tools used to build and link Go programs are
written in C. Either way, for now, we need to be able to compile the C source code.

At the first ever Gophercon in Denver, Colorado in 2014, Rob Pike
and the team expressed that one of their goals would be to replace
the C tool chain with programs written in Go— so that the entire
stack becomes Go. At the time of writing, this hasn't happened yet,
so we will need the C tools.

To determine whether you need to install the C tools or not, open a terminal
and try to use the gcc command:

gcc -v

If you receive a command not found error or similar, you will likely have to
install the C tools. If, however, you see the output from gcc giving you version
information (that's what the -v flag was for), you can likely skip this section.

http://golang.org/doc/install/source
http://golang.org/doc/install/source

Appendix

[241]

Installing C tools differs for various platforms and could change over time, so this
section should be treated only as a rough guide to help you get the tools you need.

The tools on a Mac running OS X are shipped with Xcode, which is available in
App Store for free. Once you install Xcode, you open Preferences and navigate to
the Downloads section. From there, you find the command-line tools that include
the C tools you will need to build Go.

On Ubuntu and Debian systems, you can use apt-get to install the tools:

sudo apt-get install gcc libc6-dev

For RedHat and Centos 6 systems, you can use yum to install the tools:

sudo yum install gcc glibc-devel

For Windows, the MinGW project offers a Windows installer that will install the
tools for you. Navigate to http://www.mingw.org/ and follow the instructions
there to get started.

Once you have successfully installed the tools and ensured the appropriate binaries
are included in your PATH environment variable, you should be able to see some
sensible output when running gcc -v:

Apple LLVM version 5.1 (clang-503.0.40) (based on LLVM 3.4svn)

Target: x86_64-apple-darwin13.2.0

Thread model: posix

The preceding snippet is the output on an Apple Mac computer, and the most
important thing to look for is the lack of the command not found error.

Downloading and building Go from the source
The Go source code is hosted at Google Code in a Mercurial repository, so we will
use the hg command to clone it in preparation for building.

If you do not have the hg command, you can get Mercurial from the
download page at http://mercurial.selenic.com/downloads.

In a terminal, to install Go, navigate to a suitable location such as /opt on Unix
systems, or C:\ on Windows.

Get the latest release of Go by typing the following command:

hg clone -u release https://code.google.com/p/go

http://www.mingw.org/
http://mercurial.selenic.com/downloads

Good Practices for a Stable Go Environment

[242]

After a while, the latest Go source code will download into a new go folder.

Navigate to the go/src folder that was just created and run the all script,
which will build an instance of Go from the source code. On Unix systems this
is all.bash, on Windows it's all.bat.

Once all the build steps are complete, you should notice that all the tests have
successfully passed.

Configuring Go
Go is now installed, but in order to use the tools we must ensure it is properly
configured. To make calling the tools easier, we need to add our go/bin path to
the PATH environment variable.

On Unix systems, you should add export PATH=$PATH:/opt/
go/bin (make sure it is the path you chose when downloading
the source) to your .bashrc file.
On Windows, open System Properties (try right-clicking on
My Computer) and under Advanced, click on the Environment
Variables button and use the UI to ensure the PATH variable
contains the path to your go/bin folder.

In a terminal (you may need to restart it for your changes to take effect), you can
make sure this worked by printing the value of the PATH variable:

echo $PATH

Ensure the value printed contains the correct path to your go/bin folder, for
example, on my machine it prints as:

/usr/local/bin:/usr/bin:/bin:/opt/go/bin

The colons (semicolons on Windows) between the paths indicate
that the PATH variable is actually a list of folders rather than
just one folder. This indicates that each folder included will be
searched when you enter commands in your terminal.

Now we can make sure the Go build we just made runs successfully:

go version

Appendix

[243]

Executing the go command (that can be found in your go/bin location) like this
will print out the current version for us. For example, for Go 1.3, you should see
something similar to:

go version go1.3 darwin/amd64

Getting GOPATH right
GOPATH is another environment variable to a folder (like PATH in the previous section)
that is used to specify the location for Go source code and compiled binary packages.
Using the import command in your Go programs will cause the compiler to look in
the GOPATH location to find the packages you are referring to. When using go get
and other commands, projects are downloaded into the GOPATH folder.

While the GOPATH location can contain a list of colon-separated folders such as PATH,
and you can even have a different value for GOPATH depending on which project you
are working in, it is strongly recommended that you use a single GOPATH location for
everything, and this is what we will assume you will do for the projects in this book.

Create a new folder called go, this time in your Users folder somewhere, perhaps
in a Work subfolder. This will be our GOPATH target and is where all the third-party
code and binaries will end up, as well as where we will write our Go programs and
packages. Using the same technique you used when setting the PATH environment
variable in the previous section, set the GOPATH variable to the new go folder. Let's
open a terminal and use one of the newly installed commands to get a third-party
package for us to use:

go get github.com/stretchr/powerwalk

Getting the powerwalk library from Stretchr will actually cause the following
folder structure to be created; $GOPATH/src/github.com/stretchr/powerwalk.
You can see that the path segments are important in how Go organizes things,
which helps namespace projects and keeps them unique. For example, if you
created your own package called powerwalk, you wouldn't keep it in the GitHub
repository of Stretchr, so the path would be different.

When we create projects in this book, you should consider a sensible GOPATH root
for them. For example, I used github.com/matryer/goblueprints, and if you
were to go get that, you would actually get a complete copy of all the source code
for this book in your GOPATH folder!

Good Practices for a Stable Go Environment

[244]

Go tools
An early decision made by the Go core team was that all Go code should look familiar
and obvious to everybody who speaks Go rather than each code base requiring
additional learning in order for new programmers to understand it or work on it.
This is an especially sensible approach when you consider open source projects,
some of which have hundreds of contributors coming and going all the time.

There is a range of tools that can assist us in achieving the high standards set by
the Go core team, and we will see some of the tools in action in this section.

In your GOPATH location, create a new folder called tooling and create a new
main.go file containing the following code verbatim:

package main
import (
"fmt"
)
func main() {
return
var name string
name = "Mat"
fmt.Println("Hello ", name)
}

The tight spaces and lack of indentation are deliberate as we are going to look
at a very cool utility that comes with Go.

In a terminal, navigate to your new folder and run:

go fmt

At Gophercon 2014 in Denver, Colorado, most people learned that
rather than pronouncing this little triad as "format" or "f, m, t" it is
actually pronounced as a word. Try saying it to yourself now: "fhumt";
it seems that computer programmers aren't weird enough without
speaking an alien language to each other too!

You will notice that this little tool has actually tweaked our code file to ensure that
the layout (or format) of our program matches Go standards. The new version is
much easier to read:

package main

import (

Appendix

[245]

 "fmt"
)

func main() {
 return
 var name string
 name = "Mat"
 fmt.Println("Hello ", name)
}

The go fmt command cares about indentation, code blocks, unnecessary whitespace,
unnecessary extra line feeds, and more. Formatting your code in this way is a great
practice to ensure that your Go code looks like all other Go code.

Next we are going to vet our program to make sure we haven't made any mistakes
or decisions that might be confusing to our users; we can do this automatically with
another great tool that we get for free:

go vet

The output for our little program points out an obvious and glaring mistake:

main.go:10: unreachable code

exit status 1

We are calling return at the top of our function and then trying to do other things
afterwards. The go vet tool has noticed this and points out that we have unreachable
code in our file.

If you get an error running any Go tools, it usually means you have
to get the command before you can use it. However, in the case of
the vet tool, you just have to open a terminal and run:
go get code.google.com/p/go.tools/cmd/vet

It isn't just silly mistakes like this that go vet will catch, it will also look for subtler
aspects of your program that will guide you towards writing the best Go code
you can. For an up-to-date list of what the vet tool will report on, check out the
documentation at https://godoc.org/code.google.com/p/go.tools/cmd/vet.

https://godoc.org/code.google.com/p/go.tools/cmd/vet

Good Practices for a Stable Go Environment

[246]

The final tool we will play with is called goimports, and was written by Brad
Fitzpatrick to automatically fix (add or remove) import statements for Go files.
It is an error in Go to import a package and not use it, and obviously trying to
use a package without importing it won't work either. The goimports tool will
automatically rewrite our import statement based on the contents of our code file.
First, let's install goimports with the familiar command:

go get code.google.com/p/go.tools/cmd/goimports

Update your program to import some packages that we are not going to use and
remove the fmt package:

import (
 "net/http"
 "sync"
)

When we try to run our program by calling go run main.go, we will see that
we get some errors:

./main.go:4: imported and not used: "net/http"

./main.go:5: imported and not used: "sync"

./main.go:13: undefined: fmt

These errors are telling us that we have imported packages that we are not
using and missing the fmt package, and that in order to continue we need to
make corrections. This is where goimports comes in:

goimports -w *.go

We are calling the goimports command with the -w write flag, which will save
us the task of making corrections to all files ending with .go.

Have a look at your main.go file now and notice that the net/http and sync
packages have been removed and the fmt package has been put back in.

You could argue that switching to a terminal to run these commands takes more time
than just doing it manually, and you would probably be right in most cases, which is
why it is highly recommended that you integrate the Go tools with your text editor.

Appendix

[247]

Cleaning up, building, and running tests
on save
Since the Go core team has provided us with such great tools as fmt, vet, test,
and goimports, we are going to look at a development practice that has proven
to be extremely useful. Whenever we save a .go file, we want to perform the
following tasks automatically:

1.	 Use goimports and fmt to fix our imports and format the code.
2.	 Vet the code for any faux pas and tell us immediately.
3.	 Attempt to build the current package and output any build errors.
4.	 If the build is successful, run the tests for the package and output any

failures.

Because Go code compiles so quickly (Rob Pike once actually said that it doesn't
build quickly, but it's just not slow like everything else), we can comfortably build
entire packages every time we save a file. The same is true for running tests, to help
us if we are developing in a TDD style, and the experience is great. Every time we
make changes to our code, we can immediately see if we have broken something
or had an unexpected impact on some other part of our project. We'll never see
package import errors again, because our import statement will have been fixed
for us, and our code will be correctly formatted right in front of our eyes.

Some editors will likely not support running code in response to specific events,
such as saving a file, which leaves you with two options; you can either switch to a
better editor or write your own script file that runs in response to filesystem changes.
The latter solution is out of scope for this book, instead we will focus on how to
implement this functionality in a popular text editor.

Sublime Text 3
Sublime Text 3 is an excellent editor for writing Go code that runs on OS X, Linux,
and Windows, and has an extremely powerful expansion model, which makes it
easy to customize and extend. You can download Sublime Text from http://www.
sublimetext.com/ and trial-use it for free before deciding if you want to buy it or not.

Thanks to DisposaBoy (see https://github.com/DisposaBoy), there is already a
Sublime expansion package for Go, which actually gives us a wealth of features and
power that a lot of Go programmers actually miss out on. We are going to install this
GoSublime package and then build upon it to add our desired on-save functionality.

http://www.sublimetext.com/
http://www.sublimetext.com/
https://github.com/DisposaBoy

Good Practices for a Stable Go Environment

[248]

Before we can install GoSublime, we need to install Package Control into Sublime
Text. Head over to https://sublime.wbond.net/ and click on the Installation
link for instructions on how to install Package Control. At the time of writing, it's
simply a case of copying the single, albeit long, line command, and pasting it into
the Sublime console which can be opened by navigating to View | Show Console
from the menu.

Once that is complete, press shift + command + P and type Package Control:
Install Package and press return when you have selected the option. After a
short delay (where Package Control is updating its listings), a box will appear
allowing you to search for and install GoSublime just by typing it in, selecting it,
and pressing return. All being well, GoSublime will be installed and writing Go
code has just become an order of magnitude easier.

Now that you have GoSublime installed, you can open a short help file
containing the details of the package by pressing command + ., command
+ 2 (the command key and period at the same time, followed by the
command key and number 2).

Tyler Bunnell is another popular name in the Go open source community (see
https://github.com/tylerb) and we are going to use his customizations to
implement our on-save functionality.

Press command + ., command + 5 to open the GoSublime settings and add the
following entry to the object:

"on_save": [
 {
 "cmd": "gs9o_open",
 "args": {
 "run": ["sh", "go build . errors && go test -i && go test &&
go vet && golint"],
 "focus_view": false
 }
 }
]

https://sublime.wbond.net/
https://github.com/tylerb

Appendix

[249]

Notice that the settings file is actually a JSON object, so be sure to add
the on_save property without corrupting the file. For example, if you
have properties before and after, ensure the appropriate commas are
in place.

The preceding setting will tell Sublime Text to build the code looking for errors,
install test dependencies, run tests, and vet the code whenever we save the file.
Save the settings file (don't close it just yet), and let's see this in action.

Navigate to Choose File | Open… from the menu and select a folder to open—for
now let's open our tooling folder. The simple user interface of Sublime Text makes
it clear that we only have one file in our project right now, main.go. Click on the file,
add some extra linefeeds, and add and remove some indenting. Then navigate to File
| Save from the menu, or press command + S. Notice that the code is immediately
cleaned up, and provided you haven't removed the oddly placed return statement
from main.go, you will notice that the console has appeared, and it is reporting the
issue thanks to go vet:

main.go:8: unreachable code

Holding down command + shift and double-clicking on the unreachable code line in
the console will open the file and jump the cursor to the right line in question. You
can see how helpful this feature is going to be as you continue to write Go code.

If you add an unwanted import to the file, you will notice that on using on_save
you are told about the problem, but it wasn't automatically fixed. That's because
we have another tweak to make. In the same settings file as you added the on_save
property to, add the following property:

"fmt_cmd": ["goimports"]

This tells GoSublime to use the goimports command instead of go fmt. Save this
file again and head back to main.go. Add net/http to the imports again, remove
fmt import, and save the file. Notice that the unused package was removed and
fmt was again put back.

Good Practices for a Stable Go Environment

[250]

Summary
In this appendix, we installed our own build of Go from the source code, which
means we can easily use the hg command to keep our installation up to date, or
to test our beta features before they are released. It's also nice to have the entire
Go language code for us to browse on those lonely nights by the fire.

You learned about the GOPATH environment variable, and discovered a common
practice of keeping one value for all projects. This approach dramatically simplifies
working on Go projects, where otherwise you would likely continue to encounter
tricky failures.

We discovered how the Go toolset can really help us to produce high quality,
community-standards-compliant code that any other programmer could pick
up and work on with little to no additional learning. And more importantly, we
looked at how automating the use of these tools means we can truly get down to
the business of writing applications and solving problems, which is all that
developers really want to do.

Index
A
API key 161, 162
API program

design goals 168
running 186
testing, curl used 177

append built-in function 138
Archiver interface 215
arguments

parsing 225
paths, adding 227
paths, listing 226
paths, removing 228
string representations 227

authentication providers
informing about app 50, 51

authentication wrapper handler
creating 42-44

authorization, with Twitter
about 132
connection, extracting 133, 134
environment variables, reading 134-136

Available program
about 100, 116-119
building 119
code file 116, 117
running 119

avatar picture, uploading
about 81
avatar implementation, for local files 86, 87
code, optimizing 89
code, refactoring 89
different file types, supporting 88
images, serving 85
upload form 82, 83

upload, handling 83-85
user identification 81, 82

avatars, from authentication server
adding, to user interface 68
avatar URL, obtaining 66
avatar URL, transmitting 67, 68
implementing 66

avatar URL process, Gravatar
abstracting 73
authentication service 74
avatar implementation 74-76
Gravatar implementation 78-80
implementation, using 76-78

B
backup package

Archiver interface 215
backup, initiating 221, 222
changes, checking for 221
filesystem modification, checking 219, 220
hardcoding 222
writing 215
ZIP, implementing 216-219

Big Hugh Thesaurus
URL 110

Bootstrap 45

C
chat application

authentication wrapper handler,
creating 42-44

creating 9
endpoints, with dynamic paths 47, 48
logging out 69, 70

[252]

profile pictures, implementing 65
social sign-in page, creating 44-46
updating 70-72

chat room
client, modeling 16, 17
concurrency programming, idiomatic

Go used 19, 20
creating 23
helper functions, used for removing

complexity 22
modeling 15, 18, 19
turning, into HTTP handler 20, 21
using 23

code, avatar implementation
concrete types, replacing with

interfaces 89, 90
existing implementations, fixing 93
global variables, versus fields 94
interfaces, changing in test-driven

way 90-92
new design, implementing 94, 95
optimizing 89
refactoring 89
testing 95, 96
tidying up 95, 96

code, tracing
about 28
making optional 37, 38
package APIs, cleaning 39
packages, writing with TDD 28, 29
trace package, using 35-37

command-line programs
Available 100
combining 119, 120
Coolify 100
Domainify 100
Sprinkle 100
super program, building 120-123
Synonyms 100

command-line tools
pipe design 100

Coolify program
about 100, 106-108
building 109
code file 106, 107

running 109
counter program

about 127, 148
Ctrl+C, responding to 153, 154
database, connecting to 149
database, updating 151-153
messages, consuming in NSQ 149-151
running 154, 155

cross-browser resource sharing 164
curl

about 177
used, for testing API 177

D
daemon backup tool

about 229, 230
data, caching 231
duplicated structures 231
filedb records, updating 234, 235
infinite loops 232, 233

data
sharing, between handlers 159, 160

database session 162, 163
domainfinder super program

building 120-123
Domainify program

about 100, 104, 105
building 105
running 105
top-level domains, making

configurable 106
DRY (Don't Repeat Yourself) 162

E
endpoints, handling

about 171
CORS support 176
many operations, with single handler 172
poll, creating 175
poll, deleting 176
polls, reading 173-175
tags, used for adding metadata to

structs 171

[253]

enumerators
about 198
checklist, for writing 199
test-driven enumerator 200-203
writing 199

environment
installing 128
MongoDB 130
NSQ 128
starting 131

ErrNoAvatarURL error 73
external logging in

implementing 51, 52
logging in 52-54
messages, augmenting with additional

data 58-61
response from provider, handling 54-56
user data, presenting 57

F
filepath.Walk function 218
filesystem backup

backup package, writing 215
building 213
daemon backup tool 229
project structure 214
solution design 214
testing 235, 236
user command-line tool 223

G
GetAvatarURL method 73
Go

about 9, 240
building, from source 241
code, writing 239
configuring 242
C tools, installing 240, 241
downloading, from source 241
GOPATH 243
installing 240
tools 244-246

goauth2 package
URL 49

go build command 15
go fmt command 245
goimports tool 246
Google Places API

querying 204, 205
URL 191

GOPATH 243
Go programs

building 15
executing 15

Go standard library source code
URL 13

go vet tool 245
Gravatar

avatar URL process, abstracting 73
implementing 72

H
handlePolls function 171
handler functions

API key 161, 162
cross-browser resource sharing 164
database session 162, 163
per request variables 163
wrapping 161

handler function wrappers
handlePolls 170
used, for writing main function for API 170
withAPIKey 170
withCORS 170
withData 170
withVars 170

HTML client
building 23-25

http.HandleFunc function 11
HTTP methods 158
http.Request object 166

I
implementations, profile pictures

combining 96, 97
interfaces

about 29, 30
implementing 34

is package 200

[254]

J
JavaScript chat client

building 23-25

M
main function, for API

writing 168, 169
writing, handler function wrappers

used 170
mgo

URL 130
MinGW project

URL 241
MongoDB

about 127, 130
installation, validating 130
installing 130
MongoDB driver, for Go 130
URL 130

N
NewConsumer function 150
NewTemplateHandler function 14
NSQ

about 126, 129
installation, validating 129
installing 129
NSQ driver, for Go 129
twittervotes program, publishing

to 143, 144
nsqd program 129
nsqlookupd program 129

O
OAuth2

about 49
open source packages 49, 50

P
per request variables 163
pipe design, for command-line tools 100
profile pictures, implementing

avatars, from authentication server 66

public views, Go structs
controlling 195, 196

R
random recommendations, generating

about 197
CORS 208
enumerators, in Go 198, 199
Google Places API key 198
Google Places API, querying 204, 205
handlers, using query parameters 207
recommendations, building 205, 206

random recommendations web service
API, testing 209, 210
building 189
data, representing in code 193-195
project design specifics 191, 192
project overview 190, 191
public views of Go structs,

controlling 195, 196
random recommendations, generating 197
web application 210, 211

receive-only signal channel 142
red-green testing 32, 33
request 166-168
responding 164-166
RESTful API design

about 158
design concepts 158

S
send-only signal channel 140
signal channels

about 140
using 141, 142

social sign-in page, chat application
creating 44-46

Sprinkle program
about 100, 101
building 103
configurable transformations 104
running 104
working 101, 102

strings
URL 105

[255]

Sublime Text 3
about 247-249
URL 247

Synonyms program
about 100, 110
domain suggestions 115, 116
environment variables, using for

configuration 110
web API, consuming 111-115

system design
about 126, 127
database design 127, 128

T
templateHandler structure 14
templates

compiling 14
templateHandler type, implementing 14
using 25-27

Test-driven Development (TDD)
approach 74

tests, on save
building 247
cleaning up 247
running 247

Top-level Domain (TLD) 104
Twitter 126
twittervotes program

about 126, 132
authorization 132, 133
MongoDB, reading from 136-138
publishing, to NSQ 143, 144
signal channels 140-142
starting 144-146
stopping 145, 146
testing 147
Twitter, reading from 138-140

U
unexported types

returning, to users 35
unit tests 30, 31
user command-line tool

arguments, parsing 225
building 223
data persisting 224, 225
using 228

W
web 127
web client, consuming API service

about 178
index page, showing poll list 179-181
page, for creating poll 181-183
page, for viewing poll details 183-185

web server
about 10, 11
templates 11-13

WHOIS specification
URL 116

Z
ZIP

implementing 216, 217

Thank you for buying
Go Programming Blueprints

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of
our commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no
writing experience, our experienced editors can help you develop a writing career, or
simply get some additional reward for your expertise.

www.packtpub.com

Mastering Concurrency in Go
ISBN: 978-1-78398-348-3 Paperback: 328 pages

Discover and harness Go's powerful concurrency
features to develop and build fast, scalable
network systems

1.	 Explore the core syntaxes and language
features that enable concurrency in Go.

2.	 Understand when and where to use
concurrency to keep data consistent
and applications non-blocking,
responsive, and reliable.

3.	 A practical approach to utilize application
scaffolding to design highly-scalable
programs that are deeply rooted in
goroutines and channels.

Building Your First Application
with Go [Video]
ISBN: 978-1-78328-381-1 Duration: 02:47 hrs

Get practical experience and learn basic skills while
developing an application with Go

1.	 Learn the features and various aspects of
Go programming.

2.	 Create a production-ready web application
by the end of the course.

3.	 Master time-proven design patterns
for creating highly reusable
application components.

Please check www.PacktPub.com for information on our titles

iPad Enterprise Application
Development BluePrints
ISBN: 978-1-84968-294-7 Paperback: 430 pages

Design and build your own enterprise applications
for the iPad

1.	 Learn how to go about developing some
simple yet powerful applications with ease.

2.	 Each chapter explains about the technology
in-depth, while providing you with enough
information and examples to help grasp
the technology.

3.	 Get to grips with integrating Facebook, iCloud,
Twitter, and Airplay into your applications.

Socket.IO Real-time Web
Application Development
ISBN: 978-1-78216-078-6 Paperback: 140 pages

Build modern real-time web applications powered
by Socket.IO

1.	 Understand the usage of various Socket.IO
features such as rooms, namespaces,
and sessions.

2.	 Secure the Socket.IO communication.

3.	 Deploy and scale your Socket.IO and
Node.js applications in production.

4.	 A practical guide that quickly gets you
up and running with Socket.IO.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	Acknowledgments
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Chat Application with Web Sockets
	A simple web server
	Templates
	Doing things once
	Using your own handlers

	Properly building and executing Go programs

	Modeling a chat room and clients on
the server
	Modeling the client
	Modeling a room
	Concurrency programming using idiomatic Go
	Turning a room into an HTTP handler
	Use helper functions to remove complexity
	Creating and using rooms

	Building an HTML and JavaScript chat client
	Getting more out of templates

	Tracing code to get a look under the hood
	Writing a package using TDD
	Interfaces
	Unit tests
	Red-green testing
	Implementing the interface
	Unexported types being returned to users

	Using our new trace package
	Making tracing optional
	Clean package APIs

	Summary

	Chapter 2: Adding Authentication
	Handlers all the way down
	Making a pretty social sign-in page
	Endpoints with dynamic paths
	OAuth2
	Open source OAuth2 packages

	Tell the authentication providers about your app
	Implementing external logging in
	Logging in
	Handling the response from the provider
	Presenting the user data
	Augmenting messages with additional data

	Summary

	Chapter 3: Three Ways to Implement Profile Pictures
	Avatars from the authentication server
	Getting the avatar URL
	Transmitting the avatar URL
	Adding the avatar to the user interface
	Logging out
	Making things prettier

	Implementing Gravatar
	Abstracting the avatar URL process
	The authentication service and the avatar's implementation
	Using an implementation
	Gravatar implementation

	Uploading an avatar picture
	User identification
	An upload form
	Handling the upload
	Serving the images
	The Avatar implementation for local files
	Supporting different file types

	Refactoring and optimizing our code
	Replacing concrete types with interfaces
	Changing interfaces in a test-driven way
	Fixing existing implementations
	Global variables versus fields
	Implementing our new design
	Tidying up and testing

	Combining all three implementations
	Summary

	Chapter 4: Command-line Tools to Find Domain Names
	Pipe design for command-line tools
	Five simple programs
	Sprinkle
	Exercise – configurable transformations

	Domainify
	Exercise – making top-level domains configurable

	Coolify
	Synonyms
	Using environment variables for configuration
	Consuming a web API
	Getting domain suggestions

	Available

	Composing all five programs
	One program to rule them all

	Summary

	Chapter 5: Building Distributed Systems and Working with Flexible Data
	System design
	Database design

	Installing the environment
	NSQ
	NSQ driver for Go

	MongoDB
	MongoDB driver for Go

	Start the environment

	Votes from Twitter
	Authorization with Twitter
	Extracting the connection
	Reading environment variables

	Reading from MongoDB
	Reading from Twitter
	Signal channels

	Publishing to NSQ
	Gracefully starting and stopping
	Testing

	Counting votes
	Connecting to the database
	Consuming messages in NSQ
	Keeping the database updated
	Responding to Ctrl + C

	Running our solution
	Summary

	Chapter 6: Exposing Data and Functionality Through a RESTful Data Web Service API
	RESTful API design
	Sharing data between handlers
	Wrapping handler functions
	API key
	Database session
	Per request variables
	Cross-browser resource sharing

	Responding
	Understanding the request
	Simple main function to serve our API
	Using handler function wrappers

	Handling endpoints
	Using tags to add metadata to structs
	Many operations with a single handler
	Reading polls
	Creating a poll
	Deleting a poll
	CORS support

	Testing our API using curl

	A web client that consumes the API
	Index page showing a list of polls
	Page for creating a new poll
	Page showing details of the poll

	Running the solution
	Summary

	Chapter 7: Random Recommendations Web Service
	Project overview
	Project design specifics

	Representing data in code
	Public views of Go structs

	Generating random recommendations
	Google Places API key
	Enumerators in Go
	Test-driven enumerator

	Querying the Google Places API
	Building recommendations
	Handlers that use query parameters
	CORS
	Testing our API
	Web application

	Summary

	Chapter 8: Filesystem Backup
	Solution design
	Project structure

	Backup package
	Obvious interfaces?
	Implementing ZIP
	Has the filesystem changed?
	Checking for changes and initiating a backup
	Hardcoding is OK for a short while

	The user command-line tool
	Persisting small data
	Parsing arguments
	Listing the paths
	Adding paths
	Removing paths

	Using our new tool

	The daemon backup tool
	Duplicated structures
	Caching data
	Infinite loops
	Updating filedb records

	Testing our solution
	Summary

	Appendix: Good Practices for a Stable Go Environment
	Installing Go
	Installing the C tools
	Download and build Go from the source

	Configuring Go
	Getting GOPATH right

	Go tools
	Cleaning up, building, and running tests on save
	Sublime Text 3

	Summary

	Index

